Neutrino interaction vertex-finding in a DUNE far-detector using Pandora deep learning

Andy Chappell for the DUNE Collaboration 09/05/2023 CHEP 2023

Overview

- Reconstructing neutrino interactions in a liquid-argon imaging detector is a complex task
- A critical component of the pattern recognition procedure is the determination of the initial interaction location
- This talk will present a solution to this vertex finding task that integrates deep learning with an algorithmic pattern recognition chain in the Pandora pattern recognition framework

3

DUNE Physics

- Precision measurements of neutrino mixing parameters and the CP phase
- Measurement of the neutrino mass ordering
- Atmospheric neutrinos
- Exploration of the v_{τ} sector
- Sensitive to low energy neutrinos
 - Supernova and solar neutrinos
- Low background
 - Sensitivity to BSM physics
- Achieving this broad program requires effective exploitation of our imaging detectors...

LArTPC operation

- Fully active interaction medium
- Charged particles ionize argon atoms to produce drift electrons (and scintillation light) along the particle trajectory
- Electrons drift in the electric field
- Three anode wire planes (horizontal drift variant) record the deposited charge using wires of different orientations
- Result is three different 2D projections of the charged particles in the interaction
- Need to correlate those images to extract distinct 3D particle trajectories and the hierarchical flow relating them

5

Finding the interaction vertex

- Why is it important?
 - Vertex acts as anchor for clustering decisions
 - Determining particle flow depends on starting in the right place
- Why is it hard?
 - Not a collider experiment, we don't have a priori precision knowledge of the interaction location
 - Highly variable topologies
 - 3D interaction projected onto 2D outputs produces overlapping particle trajectories
 - Not always obvious, even by eye

The Concept

In training hits are assigned a class according to distance from true vertex

Network trained to learn those distances from input images

Network infers hit distances and resultant heat map isolates candidate vertex

Classification versus regression

- Why distance classes instead of per-pixel regression?
 - Distance is an inherently continuous variable, but also one that proved challenging to learn
 - Distribution of network estimates with respect to true distance often biased and with broad, asymmetric errors
 - Binning the ranges of distances and treating as classes proved accurate and sufficiently precise
- Plot shows indicative distribution of difference between network inference and truth for a single true distance interval
 - Regression results are mapped onto corresponding classes for comparison

DUNE DEEP UNDERGROUND NEUTRINO EXPERIMENT

Network architecture

- U-ResNet structure for image segmentation (arXiv:1505.04597)
- Attempt to classify every pixel in an image

Two pass approach

- DUNE events can span a large physical region (many metres)
- 256x256 pixel pass 1 input to maintain computational tractability
- Pixels have low spatial resolution relative to DUNE's ~ 0.5 cm wire pitch
- Solution: Low resolution first pass, zoom in on RoI for second pass

Gap between anode plane assemblies

- Use hit distribution around pass 1 estimated vertex to frame RoI to include as much context as possible
- 128x128 pixels for pass 2

Pass 1 estimated vertex -

Training samples

- Accelerator neutrinos
 - Incident direction determined by beam
 - Approx 64,000 training, 22,000 validation and 29,000 testing events
- Atmospheric neutrinos
 - Isotropic
 - Approx 45,000 training, 15,000 validation and 50,000 testing events
- Quite different energy spectra yield different topologies to learn
- Future sample: supernova neutrinos
 - Isotropic direction
 - Very low energy: ~10-40 MeV
 - Considering possibility of mixed training samples to avoid network proliferation

DUNE preliminary

17

13 12

network ¹⁰ 11

0.8

0.6

0.4

0.2

15 16 17 18 19

Evaluating training

- Visualize loss landscape as per Li et al (arXiv:1712.09913)
 - Generate random Gaussian direction vectors (N = 2.2M), δ and η
 - Pick α and β on a grid [-1, 1] and step $\alpha\delta$ + $\beta\eta$ away from training minimum and compute mean loss over 1024 validation set events
- Smooth loss landscape yields smooth loss function evolution
- High classification accuracy across classes

Vertex reconstruction performance

- Both accelerator and atmospheric networks yield performant vertex reconstruction
 - Higher performance of accelerator case plausibly due to consistent incident neutrino direction
 - Notable population in the tails (next slide)
- Pandora approach provides scope to identify and fix failures with downstream algorithms

Vertex reconstruction performance

- Network performs particularly well when there is clear pointing information
- Failures emerge as pointing information becomes ambiguous or hits very sparse

Future work

- Technical changes
 - Sparse convolutions might eliminate need for multiple passes
 - Split distance metric into orthogonal directions to simplify heatmap generation/processing
- Secondary vertices
 - Can extend technique to find secondary vertices
 - Guide reconstruction algorithms to "connect the dots"

Robustness tests

• Is this approach sensitive to the generator/model?

Conclusions

- Combination of deep learning and algorithmic pattern recognition yields performant vertex identification
 - Indirect approach plays to CNN classification strengths
 - Post-processing algorithm picks out the vertex
- A range of potential enhancements and extensions to explore
- Work remains to verify robustness of the technique

Andy Chappell	Pandora	CHEP 2023	DUNE DEEP UNDERGROUND NEUTRINO EXPERIMENT

Backup

17

Training metrics

Accelerator Pass 2

18

Training metrics

Accelerator Pass 1

0.10

0.08

0.06

0.04

0.02

0.00

DUNE preliminary

-2

-1

#Events: 26141 / 28596

Vertex reconstruction performance - accelerator

Vertex reconstruction (dy)

reco - true (cm)

- Large majority of events have accurately reconstructed interaction vertex
- Precise and unbiased

Vertex reconstruction performance - atmospheric

Vertex reconstruction (dy)

reco - true (cm)

 Large majority of events have accurately reconstructed ^{0.12} interaction vertex

DUNE preliminary

-2

-1

#Events: 42872 / 48926

0.08

0.07

0.06

0.04

0.03

0.02

0.01

- Larger errors dominated by neutral current interactions with largely diffuse activity
- Precise and unbiased

Ó

reco - true (cm)

-1

ż

-2

21

Comparison to accelerator BDT

Deep network out-performs the previous BDT vertex selection

