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Overview

• Reconstructing neutrino interactions in a liquid-argon imaging detector is a complex task

22.5 GeV νμ NC DIS

• A critical component of the pattern 
recognition procedure is the 
determination of the initial  
interaction location

• This talk will present a solution to 
this vertex finding task that 
integrates deep learning with an 
algorithmic pattern recognition 
chain in the Pandora pattern 
recognition framework
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DUNE Physics

• Precision measurements of neutrino mixing parameters and the CP phase

• Measurement of the neutrino mass ordering

• Atmospheric neutrinos

• Exploration of the ντ sector

• Sensitive to low energy neutrinos
• Supernova and solar neutrinos

• Low background
• Sensitivity to BSM physics

• Achieving this broad program requires effective exploitation of our imaging detectors… 
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LArTPC operation

• Fully active interaction medium

• Charged particles ionize argon atoms to 
produce drift electrons (and scintillation 
light) along the particle trajectory

• Electrons drift in the electric field

• Three anode wire planes (horizontal drift 
variant) record the deposited charge 
using wires of different orientations

• Result is three different 2D projections of 
the charged particles in the interaction

• Need to correlate those images to extract 
distinct 3D particle trajectories and the 
hierarchical flow relating them
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Finding the interaction vertex

• Why is it important?
• Vertex acts as anchor for clustering decisions

• Determining particle flow depends on starting in the right place

• Why is it hard?
• Not a collider experiment, we don’t have a priori precision

knowledge of the interaction location

• Highly variable topologies

• 3D interaction projected onto 2D outputs produces overlapping
particle trajectories

• Not always obvious, even by eye

NC Res π0

DUNE preliminary

True vertex x

w
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The Concept

In training hits are assigned
a class according to distance

from true vertex

Network trained to learn
those distances from input

images

Network infers hit distances
and resultant heat map

isolates candidate vertex
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Classification versus regression

• Why distance classes instead of per-pixel regression?
• Distance is an inherently continuous variable, but also one that proved challenging to learn

• Distribution of network estimates with respect to true distance often biased and with broad, 
asymmetric errors

• Binning the ranges of distances and treating as classes proved accurate and sufficiently precise

• Plot shows indicative distribution of
difference between network inference
and truth for a single true distance interval
• Regression results are mapped onto

corresponding classes for comparison
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Network architecture

• U-ResNet structure for image segmentation 
(arXiv:1505.04597)

• Attempt to classify every pixel in an image
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Pass 1

Pass 2

Two pass approach

• Use hit distribution around pass 1 estimated vertex 
to frame RoI to include as much context as possible

• 128x128 pixels for pass 2

• DUNE events can span a large physical region (many metres)

• 256x256 pixel pass 1 input to maintain computational tractability

• Pixels have low spatial resolution relative to DUNE’s ~0.5 cm wire pitch

• Solution: Low resolution first pass, zoom in on RoI for second pass

Gap between anode plane
assemblies

Pass 1 estimated vertex

DUNE preliminary

x

w
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Training samples

• Accelerator neutrinos
• Incident direction determined by beam

• Approx 64,000 training, 22,000 validation and
29,000 testing events

• Atmospheric neutrinos
• Isotropic

• Approx 45,000 training, 15,000 validation and
50,000 testing events

• Quite different energy spectra yield different
topologies to learn

• Future sample: supernova neutrinos
• Isotropic direction

• Very low energy: ~10-40 MeV

• Considering possibility of mixed training samples to avoid network proliferation

DUNE preliminary
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Evaluating training

• Visualize loss landscape as per Li et al (arXiv:1712.09913)
• Generate random Gaussian direction vectors (N = 2.2M), δ and η

• Pick α and β on a grid [-1, 1] and step αδ + βη away from training 
minimum and compute mean loss over 1024 validation set events

• Smooth loss landscape yields smooth loss function evolution

• High classification accuracy across classes

DUNE preliminary

DUNE preliminaryDUNE preliminary

DUNE preliminary
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Vertex reconstruction performance

Accelerator sample
< 1 cm: 81.6%
< 2 cm: 87.0%
< 3 cm: 89.0%
< 5 cm: 91.0%

• Both accelerator and atmospheric networks yield performant vertex reconstruction
• Higher performance of accelerator case plausibly due to consistent incident neutrino direction

• Notable population in the tails (next slide)

• Pandora approach provides scope to identify and fix failures with downstream algorithms

DUNE preliminary

Atmospheric sample
< 1 cm: 74.0%
< 2 cm: 82.6%
< 3 cm: 85.1%
< 5 cm: 87.3%

DUNE preliminary
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Vertex reconstruction performance

• Network performs particularly well when there is clear pointing information

• Failures emerge as pointing information becomes ambiguous or hits very sparse

DUNE preliminaryDUNE preliminaryDUNE preliminaryDUNE preliminary x

w

True vertex

Reco vertex

True vertex

Reco vertex True vertex

Reco vertex

True vertex

Reco vertex
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Future work

• Technical changes
• Sparse convolutions might eliminate need for multiple passes

• Split distance metric into orthogonal directions to simplify 
heatmap generation/processing

• Secondary vertices
• Can extend technique to find secondary vertices

• Guide reconstruction algorithms to “connect the dots”

• Robustness tests
• Is this approach sensitive to the generator/model?
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Conclusions

• Combination of deep learning and algorithmic pattern recognition yields 
performant vertex identification
• Indirect approach plays to CNN classification strengths

• Post-processing algorithm picks out the vertex

• A range of potential enhancements and extensions to explore

• Work remains to verify robustness of the technique
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Backup
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Training metrics

Accelerator Pass 2

DUNE preliminary DUNE preliminary
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Training metrics

DUNE preliminary

Accelerator Pass 1
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Vertex reconstruction performance - accelerator

• Large majority of events have accurately reconstructed
interaction vertex

• Precise and unbiased

DUNE preliminary DUNE preliminary

DUNE preliminary
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Vertex reconstruction performance - atmospheric

DUNE preliminary DUNE preliminary

DUNE preliminary

• Large majority of events have accurately reconstructed
interaction vertex
• Larger errors dominated by neutral current interactions with

largely diffuse activity

• Precise and unbiased
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Comparison to accelerator BDT

• Deep network out-performs the previous BDT vertex selection

DUNE preliminary
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