Machine Learning for Real-Time Processing of ATLAS Liquid Argon Calorimeter Signals with FPGAs CHEP 2023 - Norfolk

Johann C. Voigt on behalf of the ATLAS Liquid Argon Calorimeter Group

11 May 2023

Bundesministeri

und Forschung

ATLAS LAr-Calorimeter

- LHC provides ≈ 50 proton-proton collisions per bunch crossing (BC) $\widehat{=}$ every 25 ns $\widehat{=}$ 40 MHz
- 140-200 simultaneous collisions at High Luminosity LHC (HL-LHC) from 2029 onwards
- Higher pileup and higher trigger rate require replacement of LAr Calorimeter electronics

https://cds.cern.ch/record/2770815 [1], https://cds.cern.ch/record/1095928 [2], http://cds.cern.ch/record/1701107 [3]

ML on FPGA for Processing of LAr Calorimeter Signals

Digital energy reconstruction

• Digital energy reconstruction with Optimal Filter (OF)

$$E_t = \sum_{i=1}^5 c_i \cdot x_{t-i}$$

- Overlapping signals require better algorithm
- 556 high-performance FPGAs will be installed for real-time digital signal processing

http://cds.cern.ch/record/1701107 [3]

ML on FPGA for Processing of LAr Calorimeter Signals

Recurrent neural network architecture (RNN)

- Vanilla RNN with sliding window \rightarrow Calculate output at every bunch crossing (BC) based on limited slice out of input sequence
- $\bullet~5$ cells with 8 internal dimensions $\rightarrow~304$ multiplications

```
https://doi.org/10.1007/s41781-021-00066-y [4]
```

Johann C. Voigt (ATLAS LAr)

Convolutional neural network architecture (CNN)

- 2 convolutional layers using ReLU activation for energy reconstruction
- $\bullet \ \approx 100 \ \text{parameters}$
- $\bullet\,\approx\,20$ BC field of view

Convolutional neural network architecture (CNN)

- 2 convolutional layers using ReLU activation for energy reconstruction
- ullet pprox 100 parameters
- $\bullet~\approx$ 20 BC field of view
- 2 convolutional layers to tag undershoot of previous pulses using sigmoid activation (→ less hardware friendly)

Example sequence

- Trained on signalenriched simulated detector sequences including pileup
- True energy available as training target
- Network and Optimal Filter performance can be evaluated by comparison with true energy

Energy reconstruction performance as a function of gap between 2 pulses

 \rightarrow Improvements in reconstruction of overlapping pulses (gap < 20 BC)

Johann C. Voigt (ATLAS LAr)

ML on FPGA for Processing of LAr Calorimeter Signals

CNN performance for different detector regions

• Same architecture trained for different detector regions

Johann C. Voigt (ATLAS LAr)

CNN firmware implementation

- CNN inference implemented in VHDL
- Model architecture configurable and automatically extracted from Keras output files
- Support multiplexing:
 - \rightarrow Design runs at 12× ADC frequency and cyclically processes 12 detector cells
- Development on Intel Stratix-10 FPGA, final design will use Intel Agilex
- Calculation in 18 bit fixed point numbers
- Intel DSPs can multiply two pairs of 18 bit numbers at once
- DSP can be chained for vector multiplications

RNN firmware implementation

- Prototype in HLS4ML
 - Added Intel/Quartus support for RNN
- Optimized High Level Synthesis (HLS) implementation:
 - Multiplexing support
 - Study influence of truncation (TRN)/rounding (RND): intermediary results (I), weights (W), in-/output (D)

OVHDL implementation:

- Reuse common results between RNN cells
- Placement constraints
- Incremental compilation

FPGA resource estimation

- \bullet Latency requirement by ATLAS trigger of $\approx 150\,\text{ns}$ met by all VHDL implementations
- All VHDL compilation targets can process required number of 384 detector cells \rightarrow E.g. 12-fold multiplexing with 33 parallel instances
- Resource estimates based on Intel Quartus reports

FPGA	Network	Multiplexing	Detector cells	$f_{ m max}$	ALMs	DSPs
Stratix-10	RNN (HLS)	10	370	393 MHz	90 %	100%
	RNN (VHDL)	14	392	561 MHz	18%	66 %
	2-Conv CNN	12	396	415 MHz	8 %	28 %
	4-Conv CNN	12	396	481 MHz	18%	27 %
Agilex	2-Conv CNN	12	396	539 MHz	4 %	13 %
	4-Conv CNN	12	396	549 MHz	9 %	12%

Summary

• RNNs and CNNs outperform Optimal Filter, especially for overlapping signals

 \rightarrow Study effect of new cell energy reconstruction on photon, electron and jet measurements

- VHDL implementation of RNNs and CNNs with low latency available
- RNNs and CNNs fit target FPGA and run at required clock frequency
- Tests on FPGA hardware ongoing
- Integration with off-detector electronics firmware progressing

Backup

Distribution of deviation from true energy

Prediction in BCs without energy deposit

RNN cell structure

https://doi.org/10.48550/arXiv.2302.07555 [5], https://doi.org/10.1007/s41781-021-00066-y [4]

CNN multiplexing concept

- One FPGA needs to fit 33 CNN instances
- Each instance uses $12 \times$ multiplexing
 - \rightarrow Design needs to run at $12\times$ the ADC frequency: 480 MHz

Example for two ADCs:

CNN multiplexing concept

- One FPGA needs to fit 33 CNN instances
- Each instance uses $12 \times$ multiplexing
 - \rightarrow Design needs to run at 12× the ADC frequency: 480 MHz

ADCs:

Johann C. Voigt (ATLAS LAr)

Relative deviation between firmware and software

 Good agreement between firmware and software (for samples with pred. energy above 240 MeV)

https://doi.org/10.1007/s41781-021-00066-y [4]

Johann C. Voigt (ATLAS LAr)

LAr Phase-II readout overview

- [1] Sascha Mehlhase. ATLAS detector slice (and particle visualisations). 2021. URL: https://cds.cern.ch/record/2770815.
- Joao Pequenao. Computer generated image of the ATLAS Liquid Argon. CERN. Mar. 27, 2008. URL: https://cds.cern.ch/record/1095928 (visited on 03/29/2021).
- [3] ATLAS Collaboration. "Monitoring and data quality assessment of the ATLAS liquid argon calorimeter". In: JINST 9.arXiv:1405.3768. CERN-PH-EP-2014-045 (May 2014). Plot available separately: http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/LARG-2013-01/, P07024. 39 p. URL: http://cds.cern.ch/record/1701107 (visited on 05/28/2017).

- [4] Georges Aad et al. "Artificial Neural Networks on FPGAs for Real-Time Energy Reconstruction of the ATLAS LAr Calorimeters". In: Computing and Software for Big Science 5.1 (Oct. 2021). DOI: 10.1007/s41781-021-00066-y. URL: https://doi.org/10.1007/s41781-021-00066-y.
- [5] Georges Aad et al. Firmware implementation of a recurrent neural network for the computation of the energy deposited in the liquid argon calorimeter of the ATLAS experiment. 2023. DOI: 10.48550/ARXIV.2302.07555. URL: https://doi.org/10.48550/arXiv.2302.07555.