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1. Introduction
HVCM - Background & Motivation

• The High Voltage Converter Modulators (HVCMs) are used to 
power the linear accelerator (linac) klystrons at the Spallation 
Neutron Source (SNS) 

• The HVCMs consist of multiple modules working cooperatively to 
produce high quality neutron beams at SNS facility

• There are 15 modules that slightly differ in their designs to 
accommodate the different voltage values and types of 
klystrons

• The HVCMs occasionally experience failures which can result in 
a day or more of lost operation time 

Figure 1: SNS Unscheduled Downtime by System. On average, HVCM is the 
second leading source of downtime after Target. The average is calculated from 
fiscal year 2007 to 2021.
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1. Introduction

HVCM Anomaly Detection Overview

● Goal: Predict an upcoming machine failure before it occurs to 
improve the reliability of the HVCMs and reduce the down time for 
the SNS facility

● How: We use pulses leading to failure because we believe there is 
a sign about upcoming anomaly event before it happens

● Methodology:
o Multi-module Conditional VAE (CVAE)

• Train a CVAE that combines all 15 modules 
• Compare the results with a Single-module VAE

● Evaluation:
o Use experimental data extracted from SNS
o Evaluate the accuracy of distinguishing normal from abnormal
o Evaluate the model loss landscape performance

Anomaly
Leading to 
Anomaly

Figure 2: Toy example shows a visual representation of anomaly 
(red dot)) and data leading to anomaly (yellow shaded area).
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2. Data Description

Data Extraction 

● We train and test our methodology on experimental 
data extracted from SNS

● Normal data: we extract all three macro-pulses 
and label it as "Normal"

● Abnormal data: we extract the first macro-pulse 
(pre-fault) and label it as "Abnormal"

Time step

   Abnormal
Extract Pre-fault

       Normal
Extract all pulses

*Courtesy to Majdi Radaideh

Figure 4: Top figure shows three normal macro-pulses. Lower figure shows pre-fault, fault 
and post fault pulses respectively. 
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2. Data Description

How hard is it to identify abnormal waveforms?

● Some abnormal waveforms can be easily identified using 
clustering algorithms, or visualization techniques, such as, 
histograms, box plots, .. etc

● However, many other examples fall within the statistics of 
normal data and cannot be easily separated

● We need a better technique!

Figure 8. The std distributions of normal & abnormal waveforms

Abnormal
waveforms

Normal & 
abnormal

7



88  
8

Agenda

Introduction
HVCM background & motivation  
Project Overview

1

2 3

4

5

    Data Description
Data extraction from SNS

- Normal waveforms
- Abnormal waveforms

Data preparation
Abnormal data

Methodology
VAE background
Anomaly detection approach
Multi-module CVAE
Results

Loss Landscape
Motivation
Method background
Results

Conclusion
8



9  

3. Methodology
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What is a Variational Autoencoder (VAE)?
● Variational Autoencoder (VAE) is class of Machine Learning that 

provides a probabilistic manner for describing input data in latent 
space

● VAE consists of two Neural Networks:
o Encoder:  projects the input data into a probability distribution 

by estimating a mean and a standard deviation parameters of 
that distribution

o Decoder: learns how to reconstruct the data from the learned 
distributions

● The model loss function consists of: 
o Kullback–Leibler divergence: 

• Ensure the prior distribution to be                                                                                                                                  
as close as possible to the estimated one      

o Reconstruction error:
• Minimize the difference between                                                                                                                                      

input and output data (e.g. Mean Squared Error)

Figure 10: A typical VAE consists of an encoder that projects the input data 
into a smaller representation (z), and a decoder that takes z as inputs to 
reconstruct the input data.
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3. Methodology 
Multi-module CVAE

● We implement a Multi-module Conditional VAE (CVAE), 
motivated by the architecture or CVAE*

● The model is conditioned by the component c (red box), 
which is a One-Hot-Encoding of the 15 modules (SCL01, 
SCl05, ..etc)

● The encoder uses three 1D CNN blocks (Conv1D, BN, 
MaxPool) 

● The decoder uses also three 1D CNN block, but replaces 
MaxPool with Upsampling to go back to the original 
dimension from the reduced latent

10
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3. Methodology
Results

● Three faults (DV/DT, FLUX, and IGBT)

● Kernel density estimate (KDE) plot to show the 
distributions of the reconstruction error using, Mean 
Squared Error (MSE)

● The Receiver Operating Characteristic (ROC) curve 
shows the accuracy performance at various 
threshold settings

● The other faults show reasonable separation with 
AUC values ranging from 0.83 to 0.93 (they can be 
found in the paper*)

Figure 13: KDE distributions of the MSE from reconstructing normal (grey color) and faulty waveforms (blue 
color) for six fault types, with the corresponding ROC curve for each fault.

11

*https://arxiv.org/pdf/2304.10639.pdf
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3. Methodology
Results: Comparison

● Compare the results with a Single-module based VAE

● Single-module is a VAE that is trained individually for 
each module

● The Multi-module (top row) shows smaller 
reconstruction error, 

● for all SCL modules (SCL01, SCL05, ..etc), using 3-FLUXs 
features

● This allows to increase the separation between 
normal and abnormal waveforms

Figure 14: Normalized density estimation plot shows the reconstruction error of normal waveforms using multi-module and 
single-module. The multi-module model shows smaller reconstruction error, where the distributions of most of the 
individual systems are more shifted to the dashed black line at MSE= 10-5
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3. Methodology
Results: Comparison with errorbar

● Compare AUC values between two methods

● Multi-module has higher AUC values for almost 
all faults and modules

● The error bar is generated by using the 
probabilistic encoder model 

● Sampling from the estimated parameters 
(mean & standard deviation) at inference time

● 100 replicas are generated from the model

13

Figure 15: Compare the AUC values between single-module and multi-module using six types of faults across several modules. 
The error bar is plus/minus 1 Standard Deviation (SD) error generated by sampling the latent Z of each method
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4. Loss Landscape

Motivation

• The performance of NNs can be impacted by several factors such as 
variable initialization, optimizers, network architectures, batch sizes, ..etc

• Studying the effects of various hyper-parameters is challenging because 
their loss values live in a high-dimensional space

• Looking at 1D loss curve does not tell us the whole story!

• We need more information about the internal behaviour of the model

Figure 16: Loss values of VAE trained on CCL module

Figure 17: Loss values of VAE trained on all modules
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4. Loss Landscape

Filter Normalization background
• It has been proposed to visualize the loss landscape

• The loss landscape can show the convexity/non-convexity of the 
trained models

• Can explain why certain choice of NNs architectures are easier 
to train than others. (i.e. skip connections)

• Smooth loss landscapes (right plot) tend to generalize better
*Hao Li, and et al, Visualizing the Loss Landscape of Neural Nets. NIPS, 2019.
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4. Loss Landscape

Filter Normalization: Results 

• Visualize the loss landscape of Single- and 
Multi-module 

• We show the results for CCL4 module

• Single-module has chaotic loss surface, while 
Multi-module has smooth, convex-like loss surface

• Is this due to the random weights initialization?

17

Figure 18: Loss surface, where x- and y-axis are two random directions in weights space 
generated using filter normalization method.
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4. Loss Landscape

Filter Normalization: Results 

• Train Single-module using CCL4 file multiple times

• For each replica, we start with different weights initialization

• The results show that for multiple trials, Single-module 
produces chaotic loss surface 

• This suggests that Hyperparameter optimization (HPO) and 
Neural Network Search (NSA) is needed for each module 
when train Single-module

• But only needed once for Multi-module model!

18

Single-Module
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5. Conclusion

● Implementing a Conditional Variational Autoencoder (CVAE) to detect 
anomalies in the HCVMs at SNS

● Multi-module can laren from different files and generalize better than 
Single-module approach

● Using the probabilistic encoder model, Multi-module produces higher AUC 
values for almost all faults with smaller uncertainty band

● Using loss landscape analysis, Multi-module shows convex-like loss surface, 
while Single-module has chaotic behaviour 

20
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2. Data Description

Data Preparation
● After data extraction, we save 14 waveforms into a 

3D tensor of shape (samples, timestep, features)
o where timestep is 4500 and 14 features 

represent different waveforms

● The 14 waveforms are:
o Six IGBT current waveforms
o Three magnetic flux density in the phases A, B, and C 

of the resonant circuit (Figure 5 shows an example)
o Two waveforms represent the cap bank voltage and 

the cab bank current
o Two waveforms represent the modulator output 

voltage and the modulator current
o One waveform represents the time change of the 

modulator output voltage

● The total number of normal samples is 7246 for all 
modules combined, where the number of abnormal 
samples is 1080 waveforms

Figure 5: Different representation of a normal example (A, B, and C FLUX, and A+IGBT-I).
The waveforms are normalized between 0 and 1.

Figure 6: Number of normal samples for the 4 main modules. 24
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2. Data Description

Faults Grouping
● There are several abnormal waveform types exist for 

different modules (Figure 7 - outer bar chart)

● In this work, we group the the abnormal waveforms 
into 9 related categories (Figure 7 - inner bar chart)

● This increases the number of statistics and allows for 
more meaningful results evaluation

● The grouped abnormal categories are:
o DV/DT, Driver, SCR, SNS PPS, Misc, FLUX, IGBT, 

CB, and TPS

● In our analysis we focus on detecting the grouped 9 
faults (Figure 7 - inner bar chart) Figure 7: The outer figure (grey bars) shows percentage of abnormal waveform types with 

respect to all data including normal. The inner figure (black bars) shows the counts of 
abnormal data after regrouping

25
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3. Methodology
Results

● Box plot shows the reconstruction error, Mean Squared Error (MSE) distribution of Normal (left), and Abnormal (right) for each module using 
different waveform features  

● Overall, the normal examples show smaller MSE than abnormal, allowing us to set a threshold to classify them
● There are 1080 samples for normal and abnormal samples, where abnormal includes all fault types combined

Figure 12: Box plot shows the MSE reconstruction error distributions of normal (left plot) and abnormal (right plot) using multi-module. The x-axis shows all trained modules and 
the y-axis shows six source of waveforms. 26
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3. Methodology
Results: Multi-module vs Single-module

● We also compare our results with a single-module based VAE

● Single-module is a VAE that is trained individually for each module, 
where in this case it has been trained 12 times for the SCLs, RFQ, 
CCLs, and DTLs

● Recap, multi-module is only trained once by combining all 
modules together

● We show normalized KDE between the two methods. As expected, the 
multi-module is learning from the multiple modules and produce lower 
MSE values than single-module when reconstructing normal waveforms 

● The multi-module model shows smaller reconstruction error, where the 
distributions of most of the systems are more shifted to the dashed black 
line at MSE=10-5

● The results show that when combining all models the model can learn 
more and produce smaller error, which allows us to have higher 
separation between normal and abnormal behavior

Figure 14: Normalized density estimation plot shows the reconstruction error of normal waveforms using 
multi-module and single-module. The multi-module model shows smaller reconstruction error, where the 
distributions of most of the individual systems are more shifted to the dashed black line at MSE= 10-5 27
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3. Methodology
Results

● Three faults (DV/DT, SCR, and SNS PPS)

● Kernel density estimate (KDE) plot to show the 
distributions of the reconstruction error using, 

● Mean Squared Error (MSE)

● The Receiver Operating Characteristic (ROC) curve 
shows the accuracy performance at various 
threshold settings

● The other faults show reasonable separation with 
AUC values ranging from 0.83 to 0.93 (they can be 
found in the paper*)

Figure 13: KDE distributions of the MSE from reconstructing normal (grey color) and faulty waveforms (blue 
color) for six fault types, with the corresponding ROC curve for each fault.

28

*https://arxiv.org/pdf/2304.10639.pdf
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4.Loss Landscape

● Train 6 VAE models using different number 
of CNN layers (L):

○ L = 3, 5, 10, 20, 30, and 40.

● Transition from smooth loss surface to 
chaotic behavior as the number of layers 
increased

2D visualization of the loss surface of the Single Module-based trained using 
different number of Conv1D layers, where L is the number of layers in the 
encoder and decoder.
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4. Loss Landscape

              Single-Module                 Multi-Module

SCL01 SCL02   RFQ CCL4

   VAE

…. SCL01 SCL02   RFQ CCL4….

   VAE    VAE    VAE                          CVAE

(CVAE, SCL01) (CVAE, SCL02) (CVAE, RFQ) (CVAE, CCL4)….

• Single-Module: Train an individual Variational 
Autoencoder (VAE) for each subsystem (e.g. SCL01).

• Visualize the loss for each model.

• Multi-Module: Train a conditional Variational 
Autoencoder (CVAE) combining all subsystems together.

• Visualize the loss of the model for each file.
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CVAE Model Calibration

• The majority of the Miscalibration Area is less than 5%

Figure2: SCL01 Miscalibration Area (MA) for all waveforms 


