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1. Infroduction

HVCM - Background & Motivation
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* The High Voltage Converter Modulators (HVCMs) are used to
power the linear accelerator (linac) klystrons at the Spallation
Neutron Source (SNS)
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* The HVCMs consist of multiple modules working cooperatively to
produce high quality neutron beams at SNS facility
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* There are 15 modules that slightly differ in their designs to
accommodate the different voltage values and types of
klystrons
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Figure 1: SNS Unscheduled Downtime by System. On average, HYCM is the
second leading source of downtime after Target. The average is calculated from
. . . . . fiscal year 2007 to 2021.

* The HVCMs occasionally experience failures which can result in

a day or more of lost operation time
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1.

Intfroduction

HVCM Anomaly Detection Overview

Goal: Predict an upcoming machine failure before it occurs to
improve the reliability of the HVCMs and reduce the down time for
the SNS facility

How: We use pulses leading to failure because we believe there is
a sign about upcoming anomaly event before it happens

Methodology:
o Multi-module Conditional VAE (CVAE)

e Train a CVAE that combines all 15 modules
e« Compare the results with a Single-module VAE

Evaluation:
o Use experimental data extracted from SNS
o Evaluate the accuracy of distinguishing normal from abnormal
o Evaluate the model loss landscape performance
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Figure 2: Toy example shows a visual representation of anomaly
(red dot)) and data leading to anomaly (yellow shaded areq).
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Data Description

Data extraction from SNS
Normal waveforms
Abnormal waveforms

Data preparation

Abnormal data
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2. Data Description

Normal
Extract all pulses

Data Extraction

Normal Waveform

20 1.8 ms Pulse / 1.8 ms Pulse \ 1.8 ms Pulse

Idle time Idle time
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e We frain and test our methodology on experimental 101
data extracted from SNS
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e Normal data: we extract all three macro-pulses , ' ' ‘ ‘ , ' '
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e Abnormal data: we extract the first macro-pulse
(pre-fault) and label it as "Abnormal’
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Figure 4: Top figure shows three normal macro-pulses. Lower figure shows pre-fault, fault
and post fault pulses respectively.
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2. Data Description
How hard is it to identify abnormal waveforms?

e Some abnormal waveforms can be easily identified using
clustering algorithms, or visualization techniques, such as,
histograms, box plots, .. etc

e However, many other examples fall within the statistics of
normal data and cannot be easily separated

e We need a better techniquel!
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3. Methodology

What is a Variational Autoencoder (VAE)?

e Variational Autoencoder (VAE) is class of Machine Learning that
provides a probabilistic manner for describing input data in latent xT = T
SOACE

e VAE consists of two Neural Networks:
o Encoder: projects the input data into a probability distribution
by estimating a mean and a standard deviation parameters of
that distribution X

Input

u Sampling

Encoder
Decoder

o Decoder: learns how fto reconstruct the data from the learned
distributions

Figure 10: A typical VAE consists of an encoder that projects the input data
info a smaller representation (z), and a decoder that takes z as inpufs to

e The model loss function consists of: reconsfruct fhe input dafa.

o Kullback-Leibler divergence:
Ensure the prior distribution to be
as close as possible to the estimated one
o Reconstruction error:
«  Minimize the difference between
input and output data (e.g. Mean Squared Error)
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3. Methodology

Multi-module CVAE

e We implement a Multi-module Conditional VAE (CVAE), e The encoder uses three 1D CNN blocks (ConviD, BN,
motivated by the architecture or CVAE MaxPool)

e The modelis conditioned by the component ¢ (red box), e The decoder uses also three 1D CNN block, but replaces
which is a One-Hot-Encoding of the 15 modules (SCLOT, Reconstruction Error MaxPool with Upsampling to go back to the original
SCI0S, ..efc) dimension from the reduced latent
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3. Methodology

Results

3.5
Normal Normal = Normal

=3 DV/DT Fault FLUX Fault = IGBT Fault

e Three faults (DV/DT, FLUX, and IGBT) >
-*?2.0

e Kernel density estimate (KDE) plot to show the 815
distributions of the reconstruction error using, Mean 10
Squared Error (MSE) 0.5
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e The Receiver Operating Characteristic (ROC) curve

. 1.0
shows the accuracy performance at various e |
threshold settings Boe P
206 N s e A O
e The other faults show reasonable separation with 8 o4 i e e
AUC values ranging from 0.83 o 0.93 (they canbe S, [ o ol
i * = 00 E 5 00 | | | 00
found In The pOper ) 00 0.00 0.02 004 0.06 008 010 0.00 0.02 004 0.06 0.08 0.10 0.00 0.02 004 0.06 008 010
00 02 04 06 08 10 00 02 04 06 08 1.0 00 02 04 06 08 1.0
False Positive Rate False Positive Rate False Positive Rate
Figure 13: KDE distributions of the MSE from reconstructing normal (grey color) and faulty waveforms (blue
color) for six fault types, with the corresponding ROC curve for each fault.
*https://arxiv.org/pdf/2304.10639.pdf
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3. Methodology

Results: Comparison

e Compare the results with a Single-module based VAE

e Single-module is a VAE that is trained individually for
each module

e The Multi-module (top row) shows smaller
reconstruction error,

e forall SCL modules (SCLOT, SCLOS, ..etc), using 3-FLUXs
features

e This allows to increase the separation between
normal and abnormal waveforms
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Figure 14: Normalized density estimation plot shows the reconstruction error of normal waveforms using multi-module and
single-module. The multi-module model shows smaller reconstruction error, where the distributions of most of the
individual systems are more shifted to the dashed black line at MSE= 10
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3. Methodology

Results: Comparison with errorbar

e Compare AUC values between two methods

e Multi-module has higher AUC values for almost
all faults and modules

e The error baris generated by using the
probabilistic encoder model

e Sampling from the estimated parameters
(mean & standard deviation) at inference time

e 100 replicas are generated from the model
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Figure 15: Compare the AUC values between single-module and multi-module using six types of faults across several modules.
The error bar is plus/minus 1 Standard Deviation (SD) error generated by sampling the latent Z of each method
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4. Loss Landscape

Motivation
:: —— train
* The performance of NNs can be impacted by several factors such as — validation
variable initialization, optimizers, network architectures, batch sizes, ..etc Bl |
e Studying the effects of various hyper-parameters is challenging because 0 » “ e W

Epoch

fheir loss values live in a hlgh-dlmen5|onal space Figure 16: Loss values of VAE trained on CCL module

®* |ooking at 1D loss curve does not tell us the whole story! —— train

0.018

—— validation

0.016

loss

0.014

*  We need more information about the internal behaviour of the model

0.012

lI) 2‘0 4‘0 6‘0 86 1 6 0
Epoch

Figure 17: Loss values of VAE trained on all modules
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4. Loss Landscape

Filler Normalization background

* |t has been proposed to visualize the loss landscape

* The loss landscape can show the convexity/non-convexity of the
trained models

e Can explain why certain choice of NNs architectures are easier
to train than others. (i.e. skip connections)

. . *Hao Li, and et al, Visualizing the Loss Landscape of Neural Nets. NIPS, 2019.
* Smooth loss landscapes (right plot) tend to generalize better
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4. Loss Landscape

Filler Normalization: Results

* Visualize the loss landscape of Single- and
Multi-module

*  We show the results for CCL4 module

* Single-module has chaotic loss surface, while
Multi-mmodule has smooth, convex-like loss surface

® |s this due to the random weights initialization?
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Figure 18: Loss surface, where x- and y-axis are two random directions in weights space

generated using filter normalization method.
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4. Loss Landscape
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Filler Normalization: Results

* Train Single-module using CCL4 file multiple tfimes

®* For each replica, we start with different weights initialization

* The results show that for multiple trials, Single-module
produces chaotic loss surface

® This suggests that Hyperparameter optimization (HPO) and
Neural Network Search (NSA) is needed for each module
when train Single-module

* But only needed once for Multi-module model!
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5. Conclusion

e Implementing a Conditional Variational Autoencoder (CVAE) to detect
anomalies in the HCVMs at SNS

e Multi-module can laren from different files and generalize better than
Single-module approach

e Using the probabilistic encoder model, Multi-module produces higher AUC
values for almost all faults with smaller uncertainty band

e Using loss landscape analysis, Multi-module shows convex-like loss surface,
while Single-module has chaotic behaviour
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2. Data Description

0.8
—— Normal
(] 0.6 1
Data Preparation x x
L 0.4 L
| |
e After data exfraction, we save 14 waveformsinftoa = | ‘ - }
3D tensor of shape (samples, timestep, features)
o Wwhere timestep is 4500 and 14 features
represent different waveforms 0] R ] WﬂW””W”W”WW
é 0.6 Il 1
e The 14 waveforms are: = 3
o Six IGBT current waveforms w 4] ]
o Three magnetic flux density in the phases A, B, and C 0.2 1
of the resonant circuit (Figure 5 shows an example)
o TWO cheforms represenT The COp bOnk VOITCIge Oﬂd 0.00 0.25 0.50 0._|7_;5me1.((;()) 1.25 1.50 11.253 0.00 0.25 0.50 0._7_i5me1.((;()) 1.25 1.50 11.253
the cab bank current Figure 5: Different representation of a normal example (A, B, and C FLUX, and A+IGBT-I).
o Two waveforms represent the modulator output The waveforms are normalized between 0 and 1.

voltage and the modulator current
o One waveform represents the time change of the
modulator output voltage

CCL

e The total number of normal samples is 7246 for all
modules combined, where the number of abnormal SCL

samples is 1080 waveforms DTL

RFQ
Figure 6: Number of normal samples for the 4 main modules.
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2. Data Description

Faults Grouping

e There are several abnormal waveform types exist for
different modules (Figure 7 - outer bar chart)

e In this work, we group the the abnormal waveforms
into 9 related categories (Figure 7 - inner bar chart)

e This increases the number of statistics and allows for
more meaningful results evaluation

e The grouped abnormal categories are:
o DV/DT, Driver, SCR, SNS PPS, Misc, FLUX, IGBT,
CB, and TPS

e In our analysis we focus on detecting the grouped 9
faults (Figure 7 - inner bar chart)
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Figure 7: The outer figure (grey bars) shows percentage of abnormal waveform types with
respect to all data including normal. The inner figure (black bars) shows the counts of
abnormal data after regrouping
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3. Methodology

Results

e Box plot shows the reconstruction error, Mean Squared Error (MSE) distribution of Normal (left), and Abnormal (right) for each module using

different waveform features
e Overall, the normal examples show smaller MSE than abnormal, allowing us to set a threshold to classify them
e There are 1080 samples for normal and abnormal samples, where abnormal includes all fault types combined

B+*IGBT-I
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Figure 12: Box plot shows the MSE reconstruction error distributions of normal (left plot) and abnormal (right plot) using multi-module. The x-axis shows all tfrained modules and
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the y-axis shows six source of waveforms.

3 . . . 3 . ] [] s [} . . .
s T m | L

[3 * ¢ [ * . ’ z (] ] (] . -
{ TT T T T -
| ]

N i T ¥ v +
L *

2

) -

.

i ! L] . ' N
NN NEEEEEl.

0
_Z !
3

4 .
j ;
j .

. : 3 . :
Heen=

. . .

$ .
.

“w oo o
* @ o

— . TT
*

e e

SCLO1 SCLO5 SCLO9 SCL12 SCL14 SCL15 SCL18 SCL21 RFQ DTL3 DTL5 CCL1 CCL2 CCL3 CCL4

,, 6
.ggt]'/e?sgn Lab



3. Methodology

o
>

Module
° ° %03 B SCL15 %J
Results: Multi-module vs Single-module g o [0 g
02 scLo1 T
e We also compare our results with a single-module based VAE Soa Cioe El
0.0 .
e Single-module is a VAE that is trained individually for each module, s
where in this case it has been trained 12 times for the SCLs, RFQ, > N
CCLs, and DTLs 503 3
° =
0.2 |
e Recap, multi-module is only trained once by combining alll E 5
modules together = i
0.0 - -~
e We show normalized KDE between the two methods. As expected, the 04 cdtle
mulfi-module is learning from the multiple modules and produce lower -‘303 a
MSE values than single-module when reconstructing normal waveforms é §
é’ 0.2 T
e The multi-module model shows smaller reconstruction error, where the gm g
distributions of most of the systems are more shifted to the dashed black =
line at MSE=10" 0.0 L
0.4
e The results show that when combining all models the model can learn -‘20_3 L
more and produce smaller error, which allows us to have higher é 'cz‘%
separation between normal and abnormal behavior Koz2 5
00 -0 0 102 10-5 0% 102 102 4 R e
A —FLUX B — FLUX C — FLUX

Figure 14: Normalized density estimation plot shows the reconstruction error of normal waveforms using
mulfi-module and single-module. The multi-module model shows smaller reconstruction error, where the
distributions of most of the individual systems are more shifted to the dashed black line at MSE= 10 7
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3. Methodology

Results

e Three faults (DV/DT, SCR, and SNS PPS)

e Kernel density estimate (KDE) plot to show the
distributions of the reconstruction error using,

e Mean Squared Error (MSE)

e The Receiver Operating Characteristic (ROC) curve
shows the accuracy performance at various
threshold settings

e The other faults show reasonable separation with

AUC values ranging from 0.83 to 0.93 (they can be
found in the paper*)

*https://arxiv.org/pdf/2304.10639.pdf
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Figure 13: KDE distributions of the MSE from reconstructing normal (grey color) and faulty waveforms (blue
color) for six fault types, with the corresponding ROC curve for each fault.
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Loss Landscape

e Train 6 VAE models using different number 10—
of CNN layers (L):

o L=3,5,10, 20,30, and 40.
e Transifion from smooth loss surface to 1.0
chaotic behavior as the number of layers

0.5 1

increased

0.0

&
;
-0.54//3
540/

—1.0- . : o S B . : . .
-1.0 -05 0.0 05 1.0 -1.0 -05 00 05 1.0 -1.0 -0.5 0.0 0.5 1.0

(d) L=20 (e) L=30 (f) L=40

2D visualization of the loss surface of the Single Module-based frained using
different number of Conv 1D layers, where L is the number of layers in the
encoder and decoder.
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4. Loss Landscape

® Sinagle-Module: Train an individual Variational ®  Multi-Module: Train a conditional Variational
Autoencoder (VAE) for each subsystem (e.g. SCLOT). Autoencoder (CVAE) combining all subsystems together.
® Visualize the loss for each model. ® Visualize the loss of the model for each file.
Single-Module Multi-Module

[SCLO] ][SCLOQ ][ RFQ ] @ [SCLO] ][SCLOQ ][ RFQ ]

\

[ VAE ][ VAE ][ VAE ] @5 [ CVAE ]

%\

[ (CVAE, CCL4) ]

‘ [ (CVAE, SCLO01) ] [ (CVAE, SCL02) ] [ (CVAE, RFQ) J
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CVAE Model Calibration

®* The majority of the Miscalibration Area is less than 5%
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Figure2: SCLO1 Miscalibration Area (MA) for all waveforms
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