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PID in future lepton collider experiments

3

• Particle identification is essential for flavor physics and jet study
• Reduce combination background
• Improve mass resolution
• Improve jet energy resolution
• Benefit flavor tagging

Simulation at CEPC by Shanzhen



Cluster counting vs dE/dx
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• !"/!$: Energy loss per unit length, Landau distribution, large fluctuation
• !%/!$: Number of primary ionization clusters per unit length, Poisson distribution, small 

fluctuation à cluster counting technique



Cluster counting in drift chambers
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Drift in DC cell Waveform

• Tasks of reconstruction software
• Both primary and secondary ionization contribute peaks on the waveform
• Find the number of peaks from primary ionization

• Challenges
• High pile-up
• Could be noisy

• Machine learning can make full use of the waveform information, could be effective
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Step1. Peak Finding
Discriminate peaks (both primary and secondary) 
from the noises (classification problem)

Step2. Clusterization:
Determine the number of clusters (!"#$) from the 
detected peaks (regression problem)

Two-step reconstruction algorithm
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Derivative-based algorithm

• Idea: Peak detection by the slope change of the rising edge
• Advantages: Simple and fast
• Disadvantages: Lose efficiency for highly pile-up and noisy waveforms
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Peak finding algorithm with 1st and 2nd order derivatives
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Deep-learning-based algorithm

• Traditional algorithm: Human input rules
• Deep learning: Learn rules from large amount of datasets

• Specifically, for cluster counting reconstruction:
• Machine learning can make full use of the waveform information, not only 

information of pulse rising edge (e.g. derivative algorithm).
• Machine learning can learn the hidden relationship in data (signal/noise 

characteristics, timing structure of primary/secondary peaks).
• The reconstruction can easily be defined as classification and regression      
⇒ apply mature ML tools like TensorFlow, Keras, PyTorch, etc.
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Step1: Peak finding
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• A classification problem to classify ionization signals 
and noises in the waveform

• The data of waveform is time sequence data, which 
is suitable for RNNs, especially LSTM

• Dataset:
• Distribution of number of ionizations is flat: [1, 40]
• 2,500 waveforms/point, 1,000,000 waveforms in total

• With feedback loops, RNN has  “memory” 
• Well-suited to classifying based on time 

sequence data

RNN (Recurrent Neural Network)
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Network structure and waveform processing

• Slide window samples: (−5, +9) bins

• Adding labels according to MC truth

• Balancing signal/noise samples 10

• Labels: Signal or Noise.

• Features: Slide windows of peak candidates, 

with a shape of (15, 1)

⇒ A binary classification problem

Long short-term memory (LSTM) model Processing of waveform



Model evaluation

• Purity(Precision) = 0.9820 = TP/(TP+FP)
• Efficiency(Recall) = 0.6860 = TP/(TP+FN)
• False Positive Rate = 0.0005 = FP/(FP+TN)
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Evaluation by waveforms
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Better AUC for LSTM, due to the better 
pile-up recovery ability of the LSTM model

Comparison between LSTM and derivative model

13

Derivative algorithm
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LSTM algorithm



• A regression problem to predict !"#$
• The peaks found by peak finding 

algorithm would be training sample of 
this algorithm

• Extracting features form local input patches
• 1D CNN can handle sequence data.

Step2: Clusterization
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CNN (Convolutional Neural Network)

Time



• Labels: Number of clusters from MC truth
• Features: Time list of the detected times in the previous step. 

Encoding in an (1024, 1) array.
⇒ A regression problem

Network structure

15



Model evaluation

• Test using samples with mean number of ionizations fixed
• The difference between predicted and true values is small and stable
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• Single cell resolution (σ/µ) ∼ 22.8% (22.3% in truth)
• Good Gaussian distribution
• The relative error is quite similar to the truth value, which implies stable efficiency

Final results of the reconstruction
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Applying NN on beam test data
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• Beam tests organized by INFN group
• Cooperation between INFN and IHEP on data 

analysis is ongoing

Preliminary results of peak finding

• Clusterization under optimization



Summary and plan

• A two-step deep-learning-based cluster counting algorithm for drift 
chambers is developed

• The peak finding algorithm shows better signal purity and efficiency than derivative 
algorithm

• The clusterization algorithm gives Gaussian distributed !"#$
• By applying the algorithms, single cell resolution is close to the MC truth level
• Preliminary result with beam test data seems good

• Next
• Optimization with beam test data
• Implementation of the algorithm on online FPGA
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Backup
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Dataset

• Simulated waveforms:
• The total # of ionizations distribution is flat: [1, 40]
• 2,500 waveforms/point, 1,000,000 waveforms in total.
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