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Combinatorics with Deep Learning

Emerging field, learning of combinatorial computations with discrete
object sets having variable input and output(!) cardinality associated
with continous observables (vectors)
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HEP applications for Hyper Track — Deep
Learning to Cluster

» Track reconstruction, Calorimeter object reconstruction, even both combined

» N-Pile-up decomposition: one cluster per each pp-interaction with
associated final states (or traditional 1 hard pp + soft separation)

» Physics analysis final state clustering: group objects to access the decay
(mother) of interest, jet substructure, exotic topologies (QCD sphaleron,
new physics ‘soft bombs' ...)

In future, multiple tasks unified under the same foundational model?
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Hybrid model architecture

Per event:

[Voxel-Dynamics] — [GNN] — [Pivotal Search] — [Set Transformer]

Vv

-
single pass one iteration trial per cluster
A\ . g

VO
probabilistic extensions e.g. via normalizing flow PDFs + EM
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Voxel-Dynamics

To obtain a starting graph adjacency which is sparse but informative enough for
GNN+Transformer, e.g. in tracking applications

(Smaller) point cloud graphs can be handled directly as fully connected ...



Learned Voxel-Dynamics

Geometry <> Space-time:
Learn adaptive Voronoi voxelization of the detector 3D space (+1 time)

Dynamics <+ Combinatorics:
Learn target object (cluster) node combinatorial connectivity 2-point? C-matrix

Computationally: inference look-up acceleration is embarissingly parallel

2 N-point constructions (tensors) possible but computationally (combinatorially) heavy
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Figure: Learned Voronoi voxelization of a detector with 16384 cells (zx-projection).
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Figure: Learned Voronoi voxelization of a detector with 16384 cells (xy-projection).  ; ,,



C-matrix definition

Matrix elements Cj; encode: Given a detector hit x in 3D-space associated
with i-th voxel cell, which cells {j} could (should) it connect, given all possible
track dynamics seen in the training data?

» com: Equations of Motion (e.g. track helix trajectory) ~ space-time local
» cricket: EOM + double hops

» hyper: Hyperedge (lasso) between all hits of the track ~ space-time local
+ non-local (!)

Adjacency hierarchy: eom (most sparse) C cricket C hyper (most dense)?

3hyper (only) is strictly compatible with HyperTrack clustering, but eom can be used if the

Transformer based clustering is replaced e.g. with a traditional Kalman type recursion
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https://en.wikipedia.org/wiki/Hypergraph
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Figure: The learned C-matrix visualized for 3 different connectivity definitions.
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Properties

» By construction, pile-up invariant true/false edge efficiency (ROC-pt)
(but purity is not)
» Adaptive learned geometry — arbitrary detectors handled

» GPU-accelerated using Faiss library which does Voronoi voxelization via
K-means and then fast inference [3D hit to cell index] look-up via
accelerated geometric distance computations + fast sparsity utilizing [cell to
cell] look-up for the graph adjacency based the C-matrix.

» See Appendix for performance numbers (depends on C-matrix definition)

‘Multiresolution pyramid’ estimator possible via multiple (course ... fine) voxelizations

Continuum version via 2-pt neural net (RY x RY — [0,1]) possible (SIREN + MLP)?
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https://github.com/facebookresearch/faiss
https://arxiv.org/abs/2006.09661

SuperEdgeConv GNN

HyperTrack generalization of EdgeConv | ] (see Appendix)

The basic design idea is that GNN operates with the largest receptive field
(correlations), and Transformer will operate on sub-graphs produced by GNN,
taking care of clustering


https://arxiv.org/abs/1801.07829

GNN for latent z-representation and edge
prediction
1. [GNN Message Passing over N-layers| (receptive field growth)
(voxel-dynamic graph) — {zi(k)}f(vzl (intermediate latent vectors)

2. [Latent (residual) Fusion MLP]
{z"YN 5 {2} (final latent node vector)

3. [2-pt correlation MLP]
{(22)} — {py} (edge probability)
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Meta-Learned Clustering via Set Transformer

Permutation invariant (equivariant) Encoder-Decoder Set Transformer applied
iteratively on an edge sparsified (cut) event graph from GNN together with
multi-pivotal seeding

For pioneering work in ML, see: Lee, Lee, Teh, Deep Amortized Clustering

[ ]


https://arxiv.org/abs/1909.13433

Set Transformer

(a) Our model (b) MAB (c) SAB (d) ISAB

Figure 1. Diagrams of our attention-based set operations.

Figure: Diagram from Set Transformer paper [arxiv:1810.00825]

New in HyperTrack: GNN + multi-pivotal point (cluster seed) search mechanics
and trial logic + adaptive thresholding + new hybrid loss function

(See Appendix for details)
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https://arxiv.org/abs/1810.00825

Clustering Mechanics

Input: Edge sparsified ‘cut graph’ from GNN (based on 2-point probabilities) —
graph cut yields disconnected subgraphs (proto-clusters) [allows parallelization]

Iterate (loop)

» Greedy or Monte Carlo search walk on the subgraphs — Find strongly
connected ‘pivotal’ graph nodes based on edge probabilities, then connect
their joint (inclusive) micrograph

» Set Transformer module takes in micrograph and pivotal indices, in GNN
latent z-encoding per node + raw input (e.g. 3D hit) and gives a scalar
output for each graph node

» Threshold cut on output (fixed or adaptive via min 2-class intra-class
variance aka 1D Fisher / Otsu rule)

Output: Event-by-event, variable cardinality set of clusters each with associated
graph nodes (hits)
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https://en.wikipedia.org/wiki/Linear_discriminant_analysis

Hybrid end-to-end loss, L = 5, L;

1. Edge Binary Cross Entropy loss

2. Edge (node) contrastive* loss

3. Cluster Binary Cross Entropy loss [meta-supervised]
4

. Cluster "contrastive"® loss [meta-supervised]

Meta-supervision ~ the clustering procedure training has supervised (label)
information about which graph nodes correspond to which ground truth cluster,
but the meta-loop itself needs to make a decision which ground truth cluster to
consider (~ "Wheelerism") — majority vote.

*Distinguish right/wrong connected nodes per ground truth cluster, see contrastive learning

5Not contrastive in representation learning literature sense, but a set intersect score type
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https://arxiv.org/abs/2304.12210

Gradient flow example

~ 100 neural sub-modules ~ 3.1 million parameters
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Figure: Network weight gradient component absolute values per neural module. x-axis
left to right: GNN ~ (1/3) ... Transformer ~ (2/3) fraction of modules.
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Proof-of-Concept

Track (~ cluster) reconstruction benchmark, a challenging but controllable
problem



Track Reconstruction

>

>

v

TrackML dataset: Pythia tt + pp-minimum bias, dN.,/dn ~ 7, ACTS
detector simulation, 7 € [—4., 4], pile-up (1) = 200

Here, reduced pile-up (1) to 2 and 20 — approximately 100 and 1000
clusters (tracks) per event, graph nodes (hits) on average 10x number of
tracks. Also, we reduced the pure noise hit fraction (~ 15 — 5%). No
(unphysical) gen-level minimum pr or other cuts applied.

Only 3D hit information used (not e.g. charge deposits, detector modules)

High-level Python implementation (torch, torch-geometric, numpy,
numba-JIT)

Performance comparisons based on Double Majority Score [DMS], a set
intersection measure described in TrackML challenge, with minimum 4 hits
per ground truth cluster
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https://www.kaggle.com/c/trackml-particle-identification
https://acts.readthedocs.io/en/latest/
https://acts.readthedocs.io/en/latest/

Training

vy

Single NVidia V100-32 GB VRAM + around 25 GB CPU RAM — current
unoptimized model/code limit around p ~ 30 — training time some days to
a few weeks

Terminology here: 1 training iteration ~ 1 gradient pass
N.B. Training is still on-going on the server for p ~ 20 (still improving)

No systematic hyperparameter tuning is done (model layer design,
algorithmic thresholds or training scheme and its parameters) — will be
done on a GPU cluster
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Figure: Loss function evolution for pile-up u ~ 2 and 20 (left and right). Cosine

scheduler oscillations clearly visible. The few spikes are due to the model save-reload
code (fixed).

22 /54



1.0 1.0
0.9 0.9 1
0.81 0.8 1
] 8}
=] =1
< <
0.74 0.7 4
0.6 4 0.6 1
—— train (edge) —— train (edge)
—— validate (edge) —— validate (edge)
0.5 T T T T T T T 0.5 T T T T T
0 25000 50000 75000 100000 125000 150000 175000 0 10000 20000 30000 40000 50000
iteration iteration

Figure: Edge prediction AUC evolution for pile-up p ~ 2 and 20 (left and right).
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Physics inference performance

Efficiency is defined as HyperTrack/MC(nhits > 4), i.e. minimally
reconstructable/feasible tracks matched with Double Majority Score (DMS)

Track parameter fitting based on the clustering output is a next-step problem and
not done here — classic (recursive, robust fitting ...) or neural solutions can be
applied (regression GNN+MLP, normalizing flow PDF based ... — perhaps in
next version of HyperTrack)
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Figure: Per event Double Majority Score (~ overall efficiency) for pile-up p ~ 2 and
20 (left and right).
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Figure: Per event raw cluster multiplicity for pile-up p ~ 2 and 20 (left and right).
HyperTrack learns this implicitly — the number of clusters is not a parameter of the
algorithm.
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Figure: Raw hit multiplicity per cluster for pile-up p =~ 2 and 20 (left and right).
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Figure: DMS matched track pseudorapidity for pile-up 1 ~ 2 and 20 (left and right).
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Figure: DMS matched track atzimuthal angle for pile-up p ~ 2 and 20 (left and
right). Rotationally symmetric so OK (diagnostics).
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Figure: DMS matched track transverse momentum for pile-up p =~ 2 and 20 (left and
right). Low pr is physically hard, as usual.
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Figure: DMS matched track vertex transverse displacement [0, 0.1] mm for pile-up
w1~ 2 and 20 (left and right). Very high performance for non-displaced tracks (but this
is naturally integrated over kinematics).
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Figure: DMS matched track vertex transverse displacement [10, 100] mm for pile-up
w2 and 20 (left and right). Distribution peaks are (presumably) material secondaries
(gamma conversion v — ete™ in the detector layers) — ACTS detector simulation.
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Open Source

github.com/mieskolainen/hypertrack (MIT license), to be available

All inclusive

TrackML dataset processing, geometric and graph processing tools, torch-based
model definitions, training code, inference code and performance plots

+ docs
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https://github.com/mieskolainen/hypertrack

Hybrid Quantum Computing?

Ideally: each graph node can belong to any cluster in superposition. Read in
classical information, prepare the quantum state, do the measurement (circuit
read-out) — each node collapses into one of the clusters — repeat measurements
— get a combinatorial assignment probability distribution and trace it.

Quantum ML/AI models?

GNN: Message Passing — Quantum ML Walk on a graph [arXiv:2302.00892]
Transformer: Classical attention + Query-Key-Value logic — unitary gate
quantum version [arXiv:2209.08167]

Why?

1. Theoretically interesting and hopefully quantum speed up (one day ...)

2. Quantum representation perhaps more expressive (c.f. Weisfeiler-Lehman test
type GNN limitations, oversmoothing for deep GNNs .. .)
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https://arxiv.org/abs/2302.00892
https://arxiv.org/abs/2209.08167

Future

» Technical (speed, architecture, mixed precision, scale up)

» Math fundamentals (probabilistic, more general representations beyond
graphs: true hypergraphs, matroids ...)

» Domain adaptation / transfer learning (adapt against real data)
» Benchmark various HEP applications, especially very complicated clustering!
» Self-supervision — HyperTrack + anomaly detection?

39/54



Summary

Introduced a new neural combinatorial algorithm, HyperTrack — learning to
cluster, fundamentally ‘Al-driven’ approach for HEP reconstruction challenges

» Based on the tracking proof-of-concept, scaling up seems to be mostly
limited by computational and timing constraints (not by learning capability)

» No hand built track dynamics was used or utilized, all machine learned —
generic applications such calorimetry or QCD phenomenology / new physics
searches

» Simply increasing GNN + Transformer layers and latent dimension may
allow extremely complicated combinatorics, way beyond any
hand-engineered clustering approaches
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Appendix



func:reduce_tracks took: 0.8118 sec
hypertrack. tools.compute_ground_truth_A: Found 42 (4.762E-02) unassociated hits (self_connect_noise = False)
func:compute_ground_truth_A took: 0.8621 sec

hypertrack.predictors.compute_cell_based_adj: Geometric index search (8.83139 sec) | Adjacency construction (0.00998 sec)
hypertrack.tools.print_graph_metrics:

Ground Truth Adjacency (A)

Nodes N 882
Positive edges POS 9496
Negative edges NEG 768428
POS / NEG = 1.24E-02

Estimate (A_hat)

True Positive

True Negative

False Positive

False Negative

Accuracy (TP + TN) / (POS + NEG)
Purity = TP / (TP + FP)

True Positive Efficiency TP / POS = TP [ (TP + FN)
False Positive Efficiency = FP / NEG = FP / (FP + TN)

Edge count

1A = 9496

|A_hat]| = 14400

|A_hat| / |A| = 1.4E+84 ] 9. = 1.52
|A_hat| / NA2 = 1.4E+084 ] 7. = 1.85E-82
|A] [ NA2 = 9.5E+03 / 7. = 1.22E-02




func:reduce_tracks took: 0.0342 sec
hypertrack.tools.compute_ground_truth_A: Found 498 (4.760E-02) unassociated hits (self_connect_noise = False)
func:compute_ground_truth_A took: 0.1611 sec

hypertrack.predictors.compute_cell_based_adj: Geometric index search (@.0543 sec) | Adjacency construction (@.2181 sec)
hypertrack.tools.print_graph_metrics:

Ground Truth Adjacency (A)

Nodes N 10462
Positive edges POS 114594
Negative edges NEG = 109338850
POS [ NEG = 1.05E-03

Estimate (A_hat)

True Positive 108614

True Negative 108530578

False Positive = 808272

False Negative 5980

Accuracy = 0.9926 (TP + TN) / (POS + NEG)
Purity 0.1185 TP / (TP + FP)

True Positive Efficiency = 0.9478 TP / POS = TP [ (TP + FN)
False Positive Efficiency = 0.0074 FP / NEG = FP [/ (FP + TN)

Edge count
114594
916886
9.2E+05 [ 1. 8.00
9.2E+05 [ 1. 8.3BE-03
= 1.1E+05 / 1. = 1.05E-03




func:reduce_tracks took: 0.1163 sec
hypertrack.tools.compute_ground_truth_A: Found 2243 (4.761E-02) unassociated hits (self_connect_noise = False)
func:compute_ground_truth_A took: 0.5900 sec

hypertrack.predictors.compute_cell_based_adj: Geometric index search (0.1398 sec) | Adjacency construction (2.621 sec)
hypertrack.tools.print_graph_metrics:

Ground Truth Adjacency (A)

Nodes N 47111
Positive edges POS 517210
Negative edges NEG 2218929111
POS | NEG 2.33E-04

Estimate (A_hat)

True Positive 489866

True Negative 2202973796

False Positive 15955315

False Negative 27344

Accuracy 9.9928 (TP + TN) [ (POS + NEG)
Purity 0.0298 TP / (TP + FP)

True Positive Efficiency 0.9471 TP / POS = TP / (TP + FN)
False Positive Efficiency 0.0072 FP / NEG = FP / (FP + TN)

Edge count

|A] 517218

|A_hat] 16445181

|A_hat| / |A] = 1.6E+87 / 5.2E+85 = 31.80
|A_hat| / N~2 = 1.6E+07 / 2.2E+89 = 7.41E-03
|A] / NA2 = 5.2E+85 [ 2.2E+09 = 2.33E-04




SuperEdgeConv GNN architecture 1/2

Message Passing + inner MLP (k-th layer)

(k) (k)

7z = Bjexs MLPyp([xi, xi — X, % © X, ej]), (1)

» Both additive and multiplicative operations, and the graph neighborhood N/;
accumulator M takes vector mean (can be changed to max, attention ... based)

» Edge features e;j computed as difference between the node vertex degrees
(di — dj)/{d) — helps to resolve certain graph ambiquities

» Some applications may benefit (heavily) from edge features such as Lorentz
invariants s = (p; + p;)?, t = (pi — pj)?, c.f. invariant/equivariant architectures
(see applications in ICENET)
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https://github.com/mieskolainen/icenet

SuperEdgeConv GNN architecture 2/2

Residual layer fusion MLP

z = MLPg(cat[z™1), 23 ... 2(F)) (2)

Requires intermediate memory, but can be critical for learning.

2-point correlation MLP

pij = MLPc(z; © z;) € [0,1] (3)

Multiplicative (i <> j symmetric) input operator. Other options also implemented.
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Set Transformer Architecture

Input: Z ~ graph node vectors in GNN z-repr. + 3D-hits concatenated

Encoder: Attention wrt pivotal nodes and self-attention
H; = SABE**(MABg(Q = Z, K = Z|pivot indices])) (4)
Pooling: Adaptive via PMA

Hy = PMA(Hz) (5)
Decoder: Attention wrt pooled representation and self-attention
Hm = SAB**(MABp(Q = Hz, K = Hy)) (6)
Mask decoder:
m = MLPp(H,,) (7)

Output: Scalar € [0, 1] per graph node
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Object flow

Point cloud [Voxel-Dynamics input]

— Starting graph adjacency with point cloud data [GNN input]
— GNN probability sparsified (cut) event graph

~ { Disconnected sub-graphs } [Pivotal search input]

— { Fully connected micro-graphs } [Transformer input]

= { clusters with associated hits } [Final output]
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Overall model details

>

>

>

Voxel-Dynamics is based on 2!7 = 131072 cells — 17 billion C-matrix
elements

Neural model contains approximately 3 million parameters for GNN (~ 1M)
+ Transformer (~ 2M)

3 GNN layers, 3 Set Transformer self-attention (SAB) layers for encoder and
decoder (with number of multihead=4), around 3 layers per MLP (several)

Increasing GNN and Transformer layers increases ‘receptive field’ — larger
number of graph node multi-point combinations and correlations considered

Latent z-representation dimension ~ 200, larger may be needed e.g. for
higher pile-up

50 /54



[ oss definitions

1. Edge Binary Cross Entropy loss is between GNN prediction p € [0, 1] and
the ground truth edge label p € {0, 1}, as encoded by the chosen ground
truth adjacency (e.g. hyper definition).

2. Contrastive edge loss is a loop over ground truth clusters (particles), with
each associated positive p, and negative p_ pointing edge (node)
connection collected and finally a softmax type contrastive loss computed
between p, and p_.

3. Cluster Binary Cross Entropy loss is between the transformer output
m € [0,1] per node vs ground truth node label m € {0,1}, with a
meta-supervision chosen majority vote ground truth cluster.

4. Cluster set score loss computes an intersection set between the hard
thresholded estimates Thresh[/m] and the ground truth m. Then a cluster
local sum over non-thresholded values m is taken over this set.
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Training details 1/2

» 3 disjoint dataset splits: A. Voxel-Dynamic (VD) train (crucially not the same as
for neural), B. Neural model train, C. Inference evaluation

» VD train [1400 events ~ 13(130) million tracks (hits)], Neural [3000 events]

» Random combinatorial resampling of tracks in pile-up reduction — for p ~ 20 this
gives Ci(n) = (10000, 1000) = 8.7 x 10*4%° combinatorial variations per event

» AdamW gradient descent, weight decay (reg.) 10>, oscillating cosine scheduler
with Ir=10"%...1075 (could be changed in the late train phase to pure decay)
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Training details 2/2

» GNN is first trained above an AUC threshold (0.95), then Transformer training is
activated end-to-end (computational speed up)

» Batch size = 1, i.e. neural weights updated after every event. Batch size can be
increased for the low pile-up case (to balance/optimize the gradient noise) (VRAM
limited)

» VD training and ROC point is pile-up invariant, neural model can be trained to be
a pile-up generalist by sliding the p-value between a large range during the training
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Inference time

2
VD index search: 0.05 sec | VD adjacency: 0.05 sec | GNN: 0.02 sec | Clustering
(Pivotal search + Transformer) loop: 1 sec (0.01 sec per cluster)

>~ 20:
VD index search: 0.05 sec | VD adjacency: 0.25 sec | GNN: 0.1 sec | Clustering

(Pivotal search + Transformer) loop: 10 sec (0.01 sec per cluster)

N.B. For acceleration, clustering search loop can be parallelized e.g. with libtorch C++
implementation and finally Transformer input can be tensorized
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