
https://root.cern

ROOT
Data Analysis Framework

New developments of TMVA/SOFIE: Code
Generation and Fast Inference for Graph

Neural Networks
Ahmat Hamdan, Lorenzo Moneta, Sanjiban Sengupta

https://root.cern

Motivation for Fast Inference
▶ Deployment of models (inference) is often neglected, more focus on training
▶ Tensorflow/PyTorch have functionality for inference

▶ can run only for their own models
▶ usage in C++ environment is cumbersome
▶ require heavy dependence

▶ Standard for describing deep learning models:
▶ ONNX (“Open Neural Network Exchange”)
▶ cannot describe all possible deep learning models (e.g. GNN) fully

▶ ONNXRuntime: a efficient inference engine based on ONNX
▶ can be difficult to integrate in HEP ecosystem

▶ control of threads, used libraries, etc..
▶ not optimised for single event evaluation

2

Idea for Inference Code Generation

▶ An inference engine that…
● Input: trained ONNX model file

■ Common standard for ML models
■ Supported by PyTorch natively
■ Converters available for Tensorflow and Keras

● Output: Generated C++ code that hard-codes the inference function
■ Easily invokable directly from other C++ project (plug-and-use)
■ Minimal dependency (on BLAS only)
■ Can be compiled on the fly using Cling JIT

▶ SOFIE : System for Optimised Fast Inference code Emit
3

▶ Parser: from ONNX to SOFIE::RModel class
▶ RModel: intermediate model representation in memory

using namespace TMVA::Experimental::SOFIE;
RModelParser_ONNX parser;
RModel model = parser.Parse("Model.onnx");

▶ Code Generation: from RModel to a C++ file (Model.hxx)  
and a weight file (Model.dat)

// generate text code internally
model.Generate();
// write output header file and data weight file
model.OutputGenerated();

▶ Generated code has minimal dependency
▶ only linear algebra library (BLAS) and no ROOT dependency
▶ can be easily integrated in your project

Code Generation

4

namespace TMVA_SOFIE_Linear_event{

struct Session {

Session(std::string filename ="") {
 if (filename.empty()) filename = "Linear_event.dat";
 std::ifstream f;
 f.open(filename);
 // read weight data file
 …………………..
}
std::vector<float> infer(float* tensor_input1){

C++ code

Other SOFIE Parsers

▶ Parser exists in SOFIE also for :
● native PyTorch files (model.pt files)

SOFIE::RModel model = SOFIE::PyTorch::Parse("PyTorchModel.pt");

● native Keras files (model.h5 files)
 SOFIE::RModel model = SOFIE::PyKeras::Parse("KerasModel.h5");

▶ Based on the PyMVA interface (in libPyMVA.so)
● Limited operator support:  

only dense layer and convolutional layers

▶ See TMVA tutorials TMVA_SOFIE_PyTorch.C and TMVA_SOFIE_Keras.C

5

https://root.cern.ch/doc/master/TMVA__SOFIE__PyTorch_8C.html
https://root.cern.ch/doc/master/TMVA__SOFIE__Keras_8C.html

▶ SOFIE generated code can be easily used in compiled C++ code

Using the Generated code: in C++

6
See full Example tutorial code

#include “Model.hxx”
// create session class
TMVA_SOFIE_Model::Session ses(“model_weights.dat”);
//—- event loop
for (ievt = 0; ievt < N; ievt++) {
 // evaluate model: input is a C float array
 float * input = event[ievt].GetData();
 auto result = ses.infer(input);
 …..
}

1. include generated Model
header file

2. Create session class
(read weight data file)

3. Evaluate the model
calling Session::infer
function

https://root.cern.ch/doc/master/TMVA__SOFIE__Inference_8py.html

▶ Code can be compiled using ROOT Cling and used in C++ interpreter
or Python

import ROOT
compile generate SOFIE code using ROOT interpreter
ROOT.gInterpreter.Declare(‘#include “Model.hxx”’)
create session class
s = ROOT.TMVA_SOFIE_Model.Session(‘model_weights.dat’)
#—- event loop
…….
evaluate the model , input can be a numpy array
of type float32
 result = s.infer(input)

Using the Generated code: in Python

7See full Example tutorial code

Compile at run-time  
SOFIE generated code  
using Cling

https://root.cern.ch/doc/master/TMVA__SOFIE__Inference_8py.html

SOFIE Integration with RDataFrame
▶ SOFIE Inference code provides a Session class with this signature:

vector<float> ModelName::Session::infer(float* input);

▶ RDataFrame(RDF) interface requires a functor with this signature:
FunctorObj::operator()(T x1, T x2, T x3,….);

▶ Have a generic functor class adapting SOFIE signature to RDF: SofieFunctor<N,Session>
▶ supporting multi-thread evaluation, using the RDF slots

ROOT::RDataFrame df("tree", “inputDataFile.root”);
auto h1 = df.DefineSlot("DNN_Value",
SofieFunctor<7,TMVA_SOFIE_higgs_model_dense::Session>(nslots),  
{"m_jj", "m_jjj", “m_lv", “m_jlv","m_bb","m_wbb","m_wwbb"}).  
Histo1D(“DNN_Value”);
h1->Draw();

8See full Example tutorial code in C++ or Python

https://root.cern.ch/doc/master/TMVA__SOFIE__RDataFrame_8C.html
https://root.cern.ch/doc/master/TMVA__SOFIE__RDataFrame_8py.html

Benchmark: Dense Model

9

10 Dense
 layers

Benchmark with RDF
▶ Test on a Deep Neural Network (from TMVA_Higgs_Classification.C tutorial)  

5 fully connected layers of 200 units
▶ Run on dataset of 5M events:

▶ Single Thread, but can run also on Multi-Threads

10
DNN Model(5 layers of 200)0

50

100

150

200

250

300

310×

Pr
oc

es
se

d
Ev

en
ts

/s
ec SOFIE

ONNXRuntime
LWTNN

Ubuntu 20.04 Intel 5000MHz

La
rg

er
 =

 B
et

te
r

https://root.cern.ch/doc/master/TMVA__Higgs__Classification_8C.html

ONNX Supported Operators

11

Implemented and integrated (all in ROOT 6.28)

Perceptron: Gemm

Activations: Relu, Selu, Sigmoid, Softmax, Tanh, LeakyRelu

Convolution (1D, 2D and 3D)

Recurrent: RNN, GRU, LSTM

Pooling: MaxPool, AveragePool, GlobalAverage

Deconvolution (1D,2D,3D)

 Layer Unary operators: Neg, Exp, Sqrt, Reciprocal, Identity

 Layer Binary operators: Add, Sum, Mul, Div

Reshape, Flatten, Transpose, Squeeze, Unsqueeze, Slice,
Concat, Reduce, Gather

 BatchNormalization, LayerNormalization

Custom operator

• Implemented but to be integrated
 (PR #11208):

• GNN (Message Passing GNN based
on DeepMind GraphNet

• Next to support:

• e.g. GNN from PyTorch geometric?

• Depending on user needs

https://github.com/root-project/root/pull/11208

Benchmark Different Model Architectures

▶ Test event performance of SOFIE vs ONNXRuntime

12

Sm
al

le
r =

 B
et

te
r

DNN FastSim CNN 2D CNN 3D Resnet RNN LSTM RNN GRU CMS DDB
Deep Learning Models

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Ti
m

e
re

la
tiv

e
to

 O
N

N
XR

un
tim

e

SOFIE

ONNXRuntime

Ubuntu 20.04 Intel 5000MHz (Batch Size = 1)
(using batch size = 1)

Benchmark Different Model Architectures

▶ Test event performance of SOFIE vs ONNXRuntime

13

Sm
al

le
r =

 B
et

te
r

(using batch size = 1 and MacOS M1)

DNN FastSim CNN 2D CNN 3D Resnet RNN LSTM RNN GRU CMS DDB
Deep Learning Models

0

0.5

1

1.5

2

2.5

Ti
m

e
re

la
tiv

e
to

 O
N

N
XR

un
tim

e

SOFIE

ONNXRuntime

MacOS arm64 M1max

SOFIE for Graph Networks

▶ First developments to support GNN models
▶ Started with a network developed by LHCb:

● Message Passing GNN built and trained using the DeepMind’s 
Graph Nets library
● model plan to be used in LHCb trigger using full event interpretation  

 (see CHEP-2023 contribution #459)
● important to have efficient implementation and with minimal

dependencies
● The initial prototype for SOFIE has been developed
■ available as ROOT PR #11208  

14

https://indico.jlab.org/event/459/contributions/11719/
https://github.com/root-project/root/pull/11208

GNN Support
▶ Follow Graph Nets architecture

● A model is described by
■ number of nodes and edges
■ sender/receiver list of edges
■ number of features (for node, edge and global)

● Updating functions on node, edge and global features
■ MLP (Multi-Layer Perceptron)

■ including activation functions  
and layer normalisation

■ Aggregation functions
■ Mean, Sum,…

15

SOFIE GNN Support
▶ Developed C++ classes for representing GNN structure.

● based on SOFIE RModel and the ROperator classes developed for
supporting ONNX.

● SOFIE classes provide the functionality to generate C++ inference code
▶ Python code (based on PyROOT) for initialising SOFIE classes from the

Graph Nets models

16

RModel_GNN

Graph Nets GNN

GNN Inference
▶ Final model is composed by several blocks

chained together
● SOFIE can generate C++ code for  

each single GNN block
● a C++ struct of RTensor’s represents the GNN

data flowing trough the model
● Users can stuck the GNN blocks according to  

the desired architecture in the inference function for
the full model

17

Benchmark of SOFIE GNN

▶ Test inference performance of a toy architecture from LHCb
● scaling number of nodes and edges

18

Intel Linux Desktop MacOS M1

SOFIE GNN Performance

▶ Test inference performance of a toy architecture from LHCb
● scaling number of nodes and edges

19

▶ Benchmark results for SOFIE
▶ 5-10 faster for small GNN size
▶ comparable for large GNN  

(but much faster on MacOS)

▶ For large model, evaluation will be
dominated by matrix operations
(BLAS)

▶ Memory usage is similar, but no
optimisation for memory has been
done so far in SOFIE.

Intel Linux Desktop

Future Work for SOFIE

▶ Implement missing ONNX operators depending on user requests
▶ Extend support for Keras/Tensorflow direct parser
▶ Extend GNN support for different types of GNN

● support some GNN types from the PyTorch geometric library
● e.g. point-cloud GNN used by ParticleNet (CMS)

▶ Implement some optimisations:
● optimisation of memory usage
● layer fusions

▶ Investigate to generate code for different architectures (e.g GPU)
▶ Collaborate with hls4ml project to have inter-operability between the tools
▶ Support for other type of architectures can be done depending on user needs

20

Summary

▶ SOFIE, fast and easy-to-use inference engine for Deep
Learning models, is available in ROOT (version 6.28)
● Integrated with other ROOT tools (RDataFrame) for ML

inference in end-user analysis
▶ Good performance compared to existing packages (e.g.

ONNXRuntime)
▶ SOFIE can now support Graph Networks
▶ Future developments are done according to user needs and

the received feedback!
21

Example Notebooks and Tutorials

▶ Example notebooks on using SOFIE:
▶ https://github.com/lmoneta/tmva-tutorial/tree/master/sofie

▶ Tutorials are also available in the tutorial/tmva directory

▶ Link to SOFIE code in current ROOT master in GitHub

▶ Link to benchmarks in rootbench 

22

https://github.com/lmoneta/tmva-tutorial/tree/master/sofie
https://root.cern.ch/doc/master/group__tutorial__tmva.html
https://github.com/root-project/root/tree/master/tmva/sofie
https://github.com/root-project/rootbench/pull/239

Backup Slides

23

Benchmark using a CMS Model
▶ SOFIE can parse some complex models: CMS Deep Double model (DDB.onnx)

▶ 3 inputs with 1d Conv + GRU

24

La
rg

er
 =

 B
et

te
r

Ubuntu Intel i9-9900 MaCOS M1 Max0

20
40
60
80

100
120
140
160
180
200
220
240

Pr
oc

es
se

d
Ev

en
ts

/s
ec SOFIE

ONNXRuntime

DDB CMS Model (BS=1)

I
▶ Comparison of SOFIE inference with

ONNXRuntime (from Microsoft) and LWTNN
(ATLAS)
● 2-3 faster than ONNXRuntime for DNN

with batch size=1
■ e.g. using RDF interface for a DNN

with 5 layers of 200x200 nodes:
◆ SOFIE: 310K evts/s,

ONNXRuntime: 120K evt/s,
LWTNN: 120K evts/s

● 20% faster for RNN operators
● slightly slower for CNN (20% for 2D) on

Linux but not on MacOS M1 (difference
probably due to different BLAS
implementation used)

● Further optimisations are still possible
25

DNN FastSim CNN 2D CNN 3D Resnet RNN LSTM RNN GRU CMS DDB
Deep Learning Models

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Ti
m

e
re

la
tiv

e
to

 O
N

N
XR

un
tim

e

SOFIE

ONNXRuntime

Ubuntu 20.04 Intel 5000MHz (Batch Size = 1)

DNN FastSim CNN 2D CNN 3D Resnet RNN LSTM RNN GRU CMS DDB
Deep Learning Models

0

0.5

1

1.5

2

2.5

Ti
m

e
re

la
tiv

e
to

 O
N

N
XR

un
tim

e

SOFIE

ONNXRuntime

MacOS arm64 M1max

Intel CPU

Mac M1

GNN Memory Usage

▶ Measure memory usage in both SOFIE and Graph-Nets

26

▶ no optimization done for
SOFIE

▶ possibility to reduce
memory usage by a
significant factor

