New developments of TMVA/SOFIE: Code Generation and Fast Inference for Graph Neural Networks

Ahmat Hamdan, Lorenzo Moneta, Sanjiban Sengupta

Computing in High Energy & Nuclear Physi

Motivation for Fast Inference

- Deployment of models (inference) is often neglected, more focus on training
- Tensorflow/PyTorch have functionality for inference
 - can run only for their own models
 - usage in C++ environment is cumbersome
 - require heavy dependence
- Standard for describing deep learning models:
 - ONNX ("Open Neural Network Exchange")
 - cannot describe all possible deep learning models (e.g. GNN) fully
- ONNXRuntime: a efficient inference engine based on ONNX
 - can be difficult to integrate in HEP ecosystem
 - control of threads, used libraries, etc..
 - not optimised for single event evaluation

Idea for Inference Code Generation

An inference engine that...

- Input: trained ONNX model file
 - Common standard for ML models
 - Supported by PyTorch natively
 - Converters available for Tensorflow and Keras

• **Output**: Generated C++ code that hard-codes the inference function

- Easily invokable directly from other C++ project (plug-and-use)
- Minimal dependency (on BLAS only)
- Can be compiled on the fly using Cling JIT

SOFIE : System for Optimised Fast Inference code Emit

Code Generation

Parser: from ONNX to SOFIE::RModel class

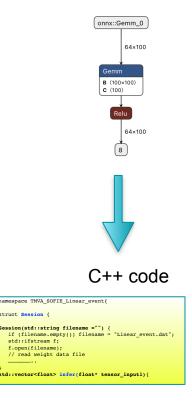
RModel: intermediate model representation in memory

```
using namespace TMVA::Experimental::SOFIE;
RModelParser_ONNX parser;
RModel model = parser.Parse("Model.onnx");
```

Code Generation: from RModel to a C++ file (Model.hxx) and a weight file (Model.dat)

```
// generate text code internally
model.Generate();
// write output header file and data weight file
model.OutputGenerated();
```

- Generated code has minimal dependency
 - only linear algebra library (BLAS) and no ROOT dependency
 - can be easily integrated in your project



Other SOFIE Parsers

Parser exists in SOFIE also for :

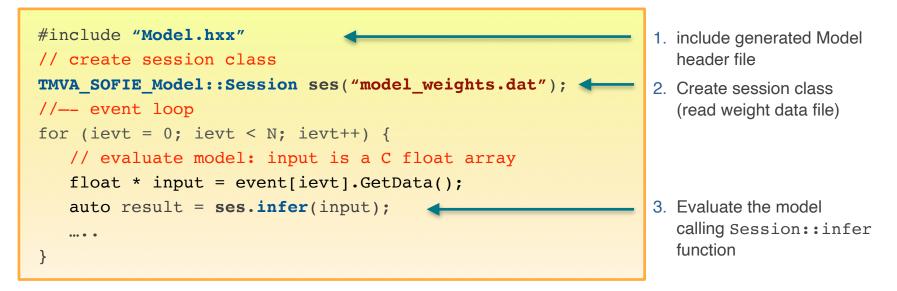
- native PyTorch files (model.pt files)
 SOFIE::RModel model = SOFIE::PyTorch::Parse("PyTorchModel.pt");
- native Keras files (model.h5 files)
 SOFIE::RModel model = SOFIE::PyKeras::Parse("KerasModel.h5");

 Limited operator support: only dense layer and convolutional layers

See TMVA tutorials <u>TMVA_SOFIE_PyTorch.C</u> and <u>TMVA_SOFIE_Keras.C</u>

Using the Generated code: in C++

SOFIE generated code can be easily used in compiled C++ code



Using the Generated code: in Python

Code can be compiled using ROOT Cling and used in C++ interpreter or Python

```
import ROOT
# compile generate SOFIE code using ROOT interpreter
ROOT.gInterpreter.Declare('#include "Model.hxx"')
# create session class
s = ROOT.TMVA_SOFIE_Model.Session('model_weights.dat')
#-- event loop
# evaluate the model , input can be a numpy array
# of type float32
result = s.infer(input)
```

SOFIE Integration with RDataFrame

- SOFIE Inference code provides a Session class with this signature: vector<float> ModelName::Session::infer(float* input);
- **RDataFrame**(RDF) interface requires a functor with this signature: FunctorObj::operator()(T x1, T x2, T x3,....);

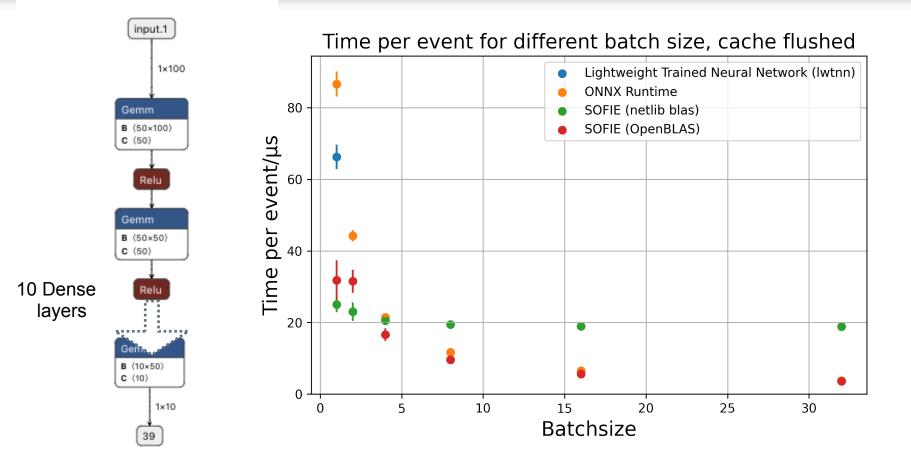
Have a generic functor class adapting SOFIE signature to RDF: SofieFunctor<N, Session>

supporting multi-thread evaluation, using the RDF slots

```
ROOT::RDataFrame df("tree", "inputDataFile.root");
auto h1 = df.DefineSlot("DNN_Value",
SofieFunctor<7,TMVA_SOFIE_higgs_model_dense::Session>(nslots),
{"m_jj", "m_jjj", "m_lv", "m_jlv", "m_bb", "m_wbb", "m_wwbb"}).
Histo1D("DNN_Value");
h1->Draw();
```

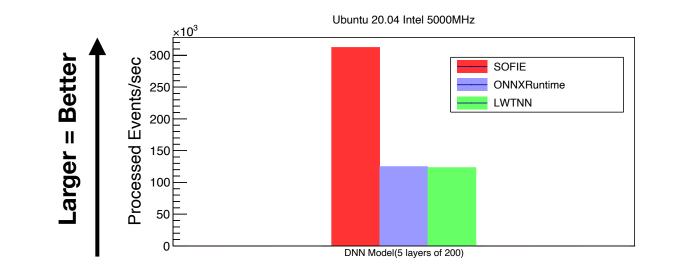
See full Example tutorial code in <u>C++</u> or <u>Python</u>

Benchmark: Dense Model



Benchmark with RDF

- Test on a Deep Neural Network (from <u>TMVA_Higgs_Classification.C</u> tutorial) 5 fully connected layers of 200 units
 - Run on dataset of 5M events:
 - Single Thread, but can run also on Multi-Threads



ONNX Supported Operators

Implemented and integrated (all in ROOT 6.28)

Perceptron: Gemm

Activations: Relu, Selu, Sigmoid, Softmax, Tanh, LeakyRelu

Convolution (1D, 2D and 3D)

Recurrent: RNN, GRU, LSTM

Pooling: MaxPool, AveragePool, GlobalAverage

Deconvolution (1D,2D,3D)

Layer Unary operators: Neg, Exp, Sqrt, Reciprocal, Identity

Layer Binary operators: Add, Sum, Mul, Div

Reshape, Flatten, Transpose, Squeeze, Unsqueeze, Slice, Concat, Reduce, Gather

BatchNormalization, LayerNormalization

Custom operator

- Implemented but to be integrated (PR #11208):
 - GNN (Message Passing GNN based on DeepMind GraphNet
- Next to support:
 - e.g. GNN from PyTorch geometric?
 - Depending on user needs

Benchmark Different Model Architectures

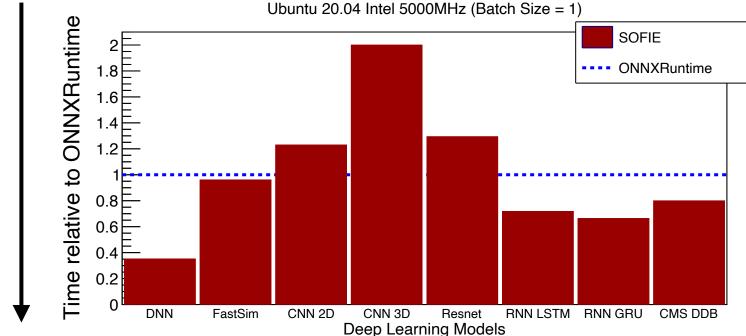
Test event performance of SOFIE vs ONNXRuntime

(using batch size = 1)

Better

II

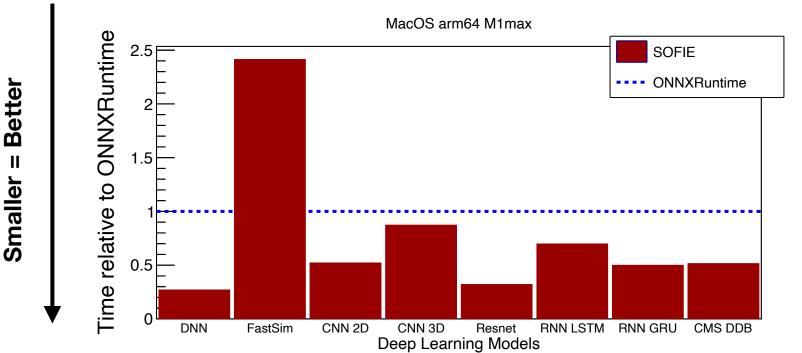
Smaller



Benchmark Different Model Architectures

Test event performance of SOFIE vs ONNXRuntime

(using batch size = 1 and MacOS M1)



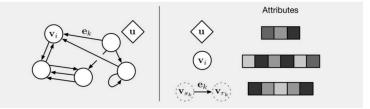
- First developments to support GNN models
- Started with a network developed by LHCb:
 - Message Passing GNN built and trained using the DeepMind's Graph Nets library
 - model plan to be used in LHCb trigger using full event interpretation (see CHEP-2023 contribution <u>#459</u>)
 - important to have efficient implementation and with minimal dependencies
 - The initial prototype for SOFIE has been developed
 - available as ROOT PR <u>#11208</u>

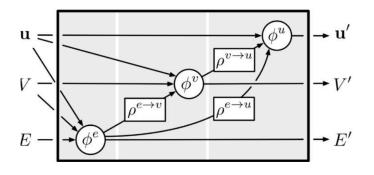
GNN Support

Follow Graph Nets architecture

- A model is described by
 - number of nodes and edges
 - sender/receiver list of edges

- Updating functions on node, edge and global features
 - MLP (Multi-Layer Perceptron)
 - including activation functions and layer normalisation
 - Aggregation functions
 - Mean, Sum,...

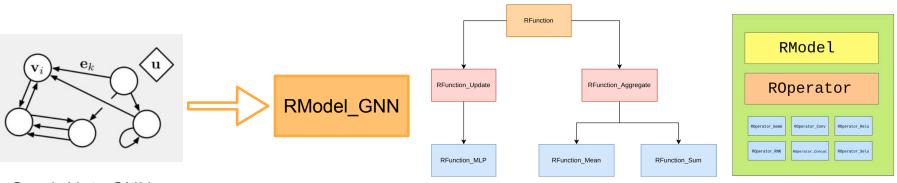




SOFIE GNN Support

Developed C++ classes for representing GNN structure.

- based on SOFIE RModel and the ROperator classes developed for supporting ONNX.
- SOFIE classes provide the functionality to generate C++ inference code
- Python code (based on PyROOT) for initialising SOFIE classes from the Graph Nets models



Graph Nets GNN

GNN Inference

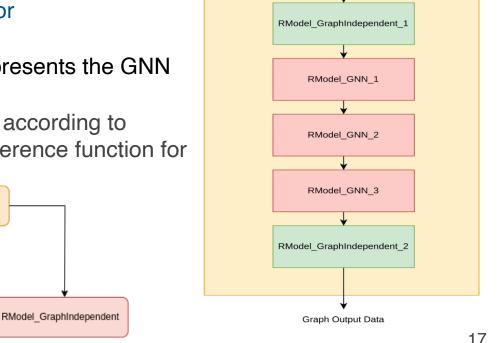
Graph Input Data

- Final model is composed by several blocks chained together
 - SOFIE can generate C++ code for each single GNN block

RModel GNN

- a C++ struct of RTensor's represents the GNN data flowing trough the model
- Users can stuck the GNN blocks according to the desired architecture in the inference function for the full model

SOFIE GNN Family

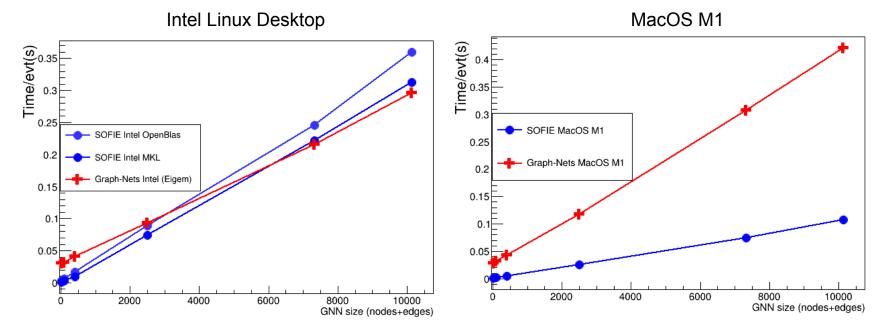


RModel GNNStack

Benchmark of SOFIE GNN

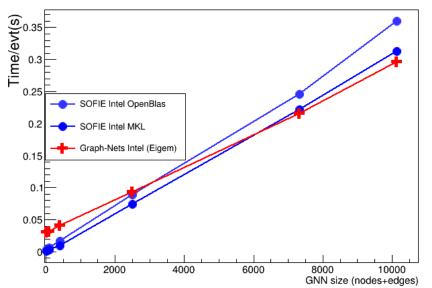
Test inference performance of a toy architecture from LHCb

• scaling number of nodes and edges

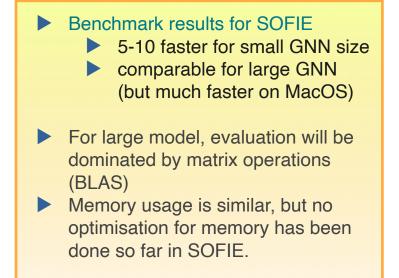


Test inference performance of a toy architecture from LHCb

scaling number of nodes and edges



Intel Linux Desktop



Future Work for SOFIE

- Implement missing ONNX operators depending on user requests
- Extend support for Keras/Tensorflow direct parser
- Extend GNN support for different types of GNN
 - support some GNN types from the PyTorch geometric library
 - e.g. point-cloud GNN used by ParticleNet (CMS)

Implement some optimisations:

- optimisation of memory usage
- layer fusions
- Investigate to generate code for different architectures (e.g GPU)
- Collaborate with hls4ml project to have inter-operability between the tools

Support for other type of architectures can be done depending on user needs

Summary

- SOFIE, fast and easy-to-use inference engine for Deep Learning models, is available in ROOT (version 6.28)
 - Integrated with other ROOT tools (*RDataFrame*) for ML inference in end-user analysis
- Good performance compared to existing packages (e.g. ONNXRuntime)
- SOFIE can now support Graph Networks
- Future developments are done according to user needs and the received feedback!

Example Notebooks and Tutorials

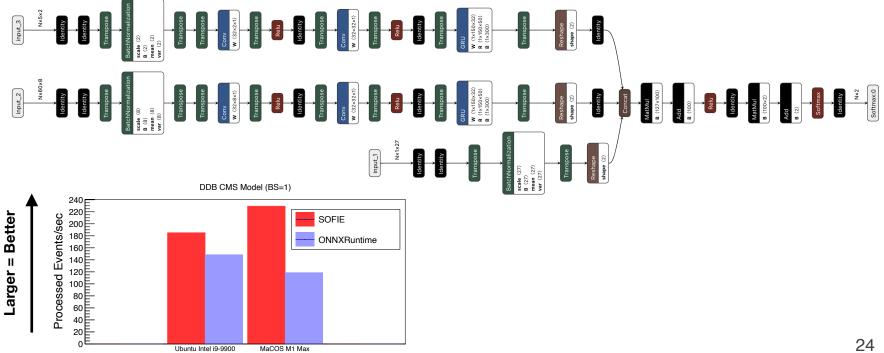
- Example notebooks on using SOFIE:
 - https://github.com/Imoneta/tmva-tutorial/tree/master/sofie
- Tutorials are also available in the <u>tutorial/tmva</u> directory
- Link to SOFIE code in current ROOT master in GitHub
- Link to benchmarks in rootbench

Backup Slides

Benchmark using a CMS Model

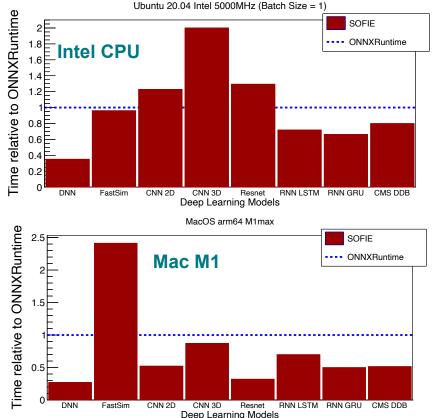
SOFIE can parse some complex models: CMS Deep Double model (DDB.onnx)

3 inputs with 1d Conv + GRU



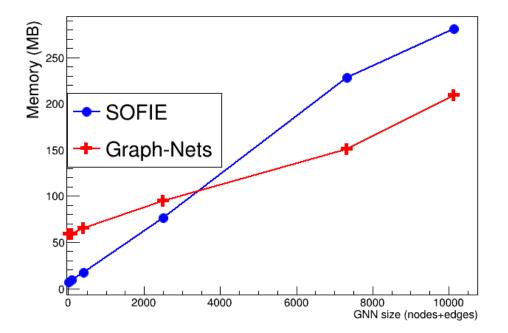
Comparison of SOFIE inference with ONNXRuntime (from Microsoft) and LWTNN (ATLAS)

- 2-3 faster than ONNXRuntime for DNN with batch size=1
 - e.g. using RDF interface for a DNN with 5 layers of 200x200 nodes:
 - SOFIE: 310K evts/s, ONNXRuntime: 120K evt/s, LWTNN: 120K evts/s
- 20% faster for RNN operators
- slightly slower for CNN (20% for 2D) on Linux but not on MacOS M1 (difference probably due to different BLAS implementation used)
- Further optimisations are still possible



GNN Memory Usage

Measure memory usage in both SOFIE and Graph-Nets



- no optimization done for SOFIE
- possibility to reduce memory usage by a significant factor