
https://root.cern

ROOT
Data Analysis Framework

New developments of TMVA/SOFIE: Code 
Generation and Fast Inference for Graph 

Neural Networks
Ahmat Hamdan, Lorenzo Moneta, Sanjiban Sengupta

https://root.cern


Motivation for Fast Inference
▶ Deployment of models (inference) is often neglected, more focus on training
▶ Tensorflow/PyTorch have functionality for inference

▶ can run only for their own models
▶ usage in C++ environment is cumbersome
▶ require heavy dependence

▶ Standard for describing deep learning models:
▶ ONNX (“Open Neural Network Exchange”)
▶ cannot describe all possible deep learning models (e.g. GNN) fully

▶ ONNXRuntime: a efficient inference engine based on ONNX 
▶ can be difficult to integrate in HEP ecosystem 

▶ control of threads, used libraries, etc..
▶ not optimised for single event evaluation
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Idea for Inference Code Generation

▶ An inference engine that…
● Input: trained ONNX model file

■ Common standard for ML models
■ Supported by PyTorch natively
■ Converters available for Tensorflow and Keras

● Output: Generated C++ code that hard-codes the inference function
■ Easily invokable directly from other C++ project (plug-and-use)
■ Minimal dependency (on BLAS only)
■ Can be compiled on the fly using Cling JIT

▶ SOFIE : System for Optimised Fast Inference code Emit
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▶ Parser: from ONNX to  SOFIE::RModel class 
▶ RModel: intermediate model representation in memory

using namespace TMVA::Experimental::SOFIE;
RModelParser_ONNX parser; 
RModel model = parser.Parse("Model.onnx"); 

▶ Code Generation: from RModel to a C++ file (Model.hxx)  
and a weight file (Model.dat) 

// generate text code internally
model.Generate();  
// write output header file and data weight file
model.OutputGenerated(); 

▶ Generated code has minimal dependency 
▶ only linear algebra library (BLAS) and no ROOT dependency
▶ can be easily integrated in your project

Code Generation
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namespace TMVA_SOFIE_Linear_event{

struct Session {

Session(std::string filename ="") {
   if (filename.empty()) filename = "Linear_event.dat";
   std::ifstream f;
   f.open(filename);
   // read weight data file
   …………………..
}
std::vector<float> infer(float* tensor_input1){

C++ code



Other SOFIE Parsers

▶ Parser exists in SOFIE also for :
● native PyTorch files (model.pt files) 

SOFIE::RModel model = SOFIE::PyTorch::Parse("PyTorchModel.pt");

● native Keras files (model.h5 files)
         SOFIE::RModel model = SOFIE::PyKeras::Parse("KerasModel.h5");

▶ Based on the PyMVA interface (in libPyMVA.so)
● Limited operator support:  

only dense layer and convolutional layers

▶ See TMVA tutorials TMVA_SOFIE_PyTorch.C and TMVA_SOFIE_Keras.C
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https://root.cern.ch/doc/master/TMVA__SOFIE__PyTorch_8C.html
https://root.cern.ch/doc/master/TMVA__SOFIE__Keras_8C.html


▶ SOFIE generated code can be easily used in compiled C++ code

Using the Generated code: in C++
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See full Example tutorial code

#include “Model.hxx”
// create session class
TMVA_SOFIE_Model::Session ses(“model_weights.dat”);
//—- event loop
for (ievt = 0; ievt < N; ievt++) {
   // evaluate model: input is a C float array
   float * input = event[ievt].GetData();
   auto result = ses.infer(input);
   …..
}

1. include generated Model 
header file

2. Create session class 
(read weight data file)

3. Evaluate the model 
calling Session::infer 
function

https://root.cern.ch/doc/master/TMVA__SOFIE__Inference_8py.html


▶ Code can be compiled using ROOT Cling and used in C++ interpreter 
or Python

import ROOT
# compile generate SOFIE code using ROOT interpreter
ROOT.gInterpreter.Declare(‘#include “Model.hxx”’)
# create session class
s = ROOT.TMVA_SOFIE_Model.Session(‘model_weights.dat’)
#—- event loop
…….
# evaluate the model , input can be a numpy array 
# of type float32 
  result = s.infer(input)  

Using the Generated code: in Python

7See full Example tutorial code

Compile at run-time  
SOFIE generated code  
using Cling

https://root.cern.ch/doc/master/TMVA__SOFIE__Inference_8py.html


SOFIE Integration with RDataFrame
▶ SOFIE Inference code provides a Session class with this signature:

vector<float> ModelName::Session::infer(float* input);

▶ RDataFrame( RDF) interface requires a functor with this signature: 
FunctorObj::operator()(T x1, T x2, T x3,….);

▶ Have a generic functor class adapting SOFIE signature to RDF: SofieFunctor<N,Session>
▶ supporting multi-thread evaluation, using the RDF slots

ROOT::RDataFrame df("tree", “inputDataFile.root”);
auto h1 = df.DefineSlot("DNN_Value", 
SofieFunctor<7,TMVA_SOFIE_higgs_model_dense::Session>(nslots),  
{"m_jj", "m_jjj", “m_lv", “m_jlv","m_bb","m_wbb","m_wwbb"}).  
Histo1D(“DNN_Value”);
h1->Draw();

8See full Example tutorial code in C++ or Python

https://root.cern.ch/doc/master/TMVA__SOFIE__RDataFrame_8C.html
https://root.cern.ch/doc/master/TMVA__SOFIE__RDataFrame_8py.html


Benchmark: Dense Model
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10 Dense 
    layers



Benchmark with RDF
▶ Test on a Deep Neural Network (from TMVA_Higgs_Classification.C tutorial)  

5 fully connected layers of 200 units
▶ Run on dataset of  5M events:

▶ Single Thread, but can run also on Multi-Threads
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ONNX Supported Operators
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Implemented and integrated   (all in ROOT 6.28)

Perceptron: Gemm

Activations: Relu, Selu, Sigmoid, Softmax, Tanh, LeakyRelu

Convolution (1D, 2D and 3D)

Recurrent: RNN, GRU, LSTM

Pooling: MaxPool, AveragePool, GlobalAverage

Deconvolution (1D,2D,3D)

 Layer Unary operators: Neg, Exp, Sqrt, Reciprocal, Identity 

 Layer Binary operators: Add, Sum, Mul, Div

Reshape, Flatten,  Transpose,    Squeeze, Unsqueeze, Slice, 
Concat, Reduce, Gather

  BatchNormalization, LayerNormalization

Custom operator

• Implemented but to be integrated  
 (PR #11208): 

• GNN (Message Passing GNN based 
on DeepMind GraphNet  

• Next to support: 

• e.g. GNN from PyTorch geometric? 

• Depending on user needs 

https://github.com/root-project/root/pull/11208


Benchmark Different Model Architectures 

▶ Test event performance of SOFIE vs ONNXRuntime
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Benchmark Different Model Architectures 

▶ Test event performance of SOFIE vs ONNXRuntime
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SOFIE for Graph Networks

▶ First developments to support GNN models
▶ Started with  a network developed by LHCb:

● Message Passing GNN built and trained using the DeepMind’s 
Graph Nets library
● model plan to be used in LHCb trigger using full event interpretation  

 (see CHEP-2023 contribution #459 )
● important to have efficient implementation and with minimal 

dependencies
● The initial prototype for SOFIE has been developed
■ available as ROOT PR #11208  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https://indico.jlab.org/event/459/contributions/11719/
https://github.com/root-project/root/pull/11208


GNN Support
▶ Follow Graph Nets architecture 

● A model is described by 
■ number of nodes and edges
■ sender/receiver list of edges
■ number of features (for node, edge and global) 

● Updating  functions on node, edge and global features
■  MLP (Multi-Layer Perceptron)

■ including activation functions  
and layer normalisation

■ Aggregation functions 
■ Mean, Sum,…
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SOFIE GNN Support
▶ Developed C++ classes for representing GNN structure. 

● based on SOFIE RModel and the ROperator classes developed for 
supporting ONNX.

● SOFIE classes provide the functionality to generate C++ inference code
▶ Python code (based on PyROOT) for initialising SOFIE classes from the 

Graph Nets models 

16
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GNN Inference
▶ Final model is composed by several blocks 

chained together
● SOFIE can generate C++ code for  

each single GNN block
● a C++ struct of RTensor’s represents the GNN 

data flowing trough the model
● Users can stuck the GNN blocks according to  

the desired architecture in the inference function for 
the full model
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Benchmark of SOFIE GNN

▶ Test inference performance of a toy architecture from LHCb
● scaling number of nodes and edges
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SOFIE GNN Performance

▶ Test inference performance of a toy architecture from LHCb
● scaling number of nodes and edges
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▶ Benchmark results for SOFIE
▶ 5-10 faster for small GNN size
▶ comparable for large GNN  

(but much faster on MacOS)

▶ For large model, evaluation will be 
dominated by matrix operations 
(BLAS)

▶ Memory usage is similar, but no 
optimisation for memory has been 
done so far in SOFIE.

Intel Linux Desktop



Future Work for SOFIE

▶ Implement missing ONNX operators depending on user requests
▶ Extend support for Keras/Tensorflow direct parser
▶ Extend GNN support for different types of GNN 

● support some GNN types from the PyTorch geometric library
● e.g. point-cloud GNN used by ParticleNet (CMS)

▶ Implement some optimisations: 
● optimisation of memory usage
● layer fusions

▶ Investigate to generate code for different architectures (e.g GPU)
▶ Collaborate with hls4ml project to have inter-operability between the tools
▶ Support for other type of architectures can be done depending on user needs
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Summary

▶ SOFIE, fast and easy-to-use inference engine for Deep 
Learning models, is available in ROOT (version 6.28)
● Integrated with other ROOT tools (RDataFrame ) for ML 

inference in end-user analysis
▶ Good performance compared to existing packages (e.g. 

ONNXRuntime) 
▶ SOFIE can now support Graph Networks
▶ Future developments are done according to user needs and 

the received feedback!
21



Example Notebooks and Tutorials 

▶ Example notebooks on using SOFIE: 
▶ https://github.com/lmoneta/tmva-tutorial/tree/master/sofie

▶ Tutorials are also available in the tutorial/tmva directory

▶ Link to SOFIE code in current ROOT master in GitHub

▶ Link to benchmarks in rootbench 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https://github.com/lmoneta/tmva-tutorial/tree/master/sofie
https://root.cern.ch/doc/master/group__tutorial__tmva.html
https://github.com/root-project/root/tree/master/tmva/sofie
https://github.com/root-project/rootbench/pull/239


Backup Slides
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Benchmark using a CMS Model
▶ SOFIE can parse some complex models: CMS Deep Double model (DDB.onnx) 

▶ 3 inputs with 1d Conv + GRU
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I
▶ Comparison of SOFIE inference with 

ONNXRuntime (from Microsoft) and LWTNN 
(ATLAS)
● 2-3 faster than ONNXRuntime for DNN 

with batch size=1
■ e.g. using RDF interface for a DNN 

with 5 layers of 200x200 nodes:
◆ SOFIE: 310K evts/s,   

ONNXRuntime: 120K evt/s,     
LWTNN: 120K evts/s

● 20% faster for RNN operators
● slightly slower for CNN ( 20% for 2D ) on 

Linux but not on MacOS M1 (difference 
probably due to different BLAS 
implementation used)

● Further optimisations are still possible
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GNN Memory Usage

▶ Measure memory usage in both SOFIE and Graph-Nets
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▶ no optimization done for 
SOFIE 

▶ possibility to reduce 
memory usage by a 
significant factor


