Machine Learning For Etch-Pit Identification for MoEDAL

J. Hays, L. Millward, K. Palodhi, A. Upadhyay

26th International Conference on Computing In High Energy and Nuclear Physics 8th May 2023

MoEDAL = The <u>Monopole & Exotics Detector at the L</u>HC

Search for highly ionizing particles such as magnetic monopoles and other exotic avatars of new physics

<u>Nuclear track detectors</u> and aluminium trapping detectors

MoEDAL = The <u>Monopole & Exotics Detector at the L</u>HC

Search for highly ionizing particles such as magnetic monopoles and other exotic avatars of new physics

Highly ionising particles passing through the NTD cause microscopic damage to the polymer that can be reveal with etching

MoEDAL = The <u>Monopole & Exotics</u> <u>Detector</u> at the <u>L</u>HC

Highly ionising particles passing through the NTD cause microscopic damage to the polymer that can be revealed with etching

Expected SM particles will typically range-in / range-out in one or two sheets

Heavily ionising particles such as monopoles will cause damage all the way through

~1 mm² image of an NTD exposed to heavy ion beam to simulate exotic particle signature

Backlit illumination

Etch-pits reflect light away from the camera and appear as black circles

Blurred blobs are etch-pits on the reverse side of the clear plastic NTD – distance between them comes from the angle of incidence of the beam

~1 mm² image of an NTD exposed to heavy ion beam to simulate exotic particle signature

Brightfield illumination

Etch-pits reflect light away from the camera and appear as black circles

Blurred blobs are etch-pits on the reverse side of the clear plastic NTD – distance between them comes from the angle of incidence of the beam

CHEP The Challenge...

10s of m² of plastic to be scanned for etch pits

Humans are very good at spotting etch-pits but the process is labour intensive and time consuming

Can Machine Learning techniques be used to train a model that can predict etch-pit locations from scanned images?

This can be used to select interesting candidates for further inspection by a human

Data Sets

Five NTD foils exposed to Pb ion test beam Front foil exposed at MoEDAL, + LHC bkg Can Identify etch-pits in unexposed foil trivially Can map locations between exposed and unexposed foils providing a source of good labels

etch pits can be parametrised by quality eg, how many foils did the ion pass through: maintaining sensitivity to weaker ionisation /

Data Sets - illumination

Dark field

Rotational

Alignment

Five NTD foils exposed to Pb ion test beam Front foil exposed at MoEDAL, + LHC bkg Can Identify etch-pits in unexposed foil trivially Can map locations between exposed and unexposed foils providing a source of good labels

3 Alignment holes drilled through the stack to provide a way to realign them after etching

Aligning roughly by hand by overlaying the images gives sufficient resolution – 5 or 6 pixels

Method 1 : Sequential deconvolution and convolution followed by ANN

- Step 1
 - Mask selection using a suitable etch-pit (maximum area, nearly circular) from the image containing multiple etch-pits
 - **Deconvolution** of a new gaussian mask with the entire image
 - **Convolution** of the circular mask with the entire image which generates convolution peaks at the centre of each symmetric etch-pit (value of the peak depends on their common area)
 - Manual threshold for separation of etch-pits from noises
- Step 2
 - Artificial neural network used with two inputs average of the image generated after deconv-conv and threshold values
 - Predicted threshold as output obtained after training which later applied to all other test images
 - Marking the actual etch-pits using morphological technique

Method 1 : Sequential deconvolution and convolution followed by ANN

threshold prediction from multiple images due to <u>deconv-conv</u> with the same mask

2 - Joydeep Chatterjee *et al*, Application of Machine Learning on sequential deconvolution and convolution techniques for analysis of Nuclear Track Detector (NTD) images, arXiv:2005.07368, May 15, 2020

Works on whole single channel backlit images

ANN used to provide thresholding – can be done by hand but is labour intensive

Trained using hand labelled data

Method 2: Fully convolutional networks with transfer learning

Combine CNNs from 5-fold + three lighting

scenarios (backlit – 1 channel, darkfield – 1

Step 1: CNN Classifiers

4 Convolution + pooling layers 4x4 kernel**

2 dense layers combine conv features into output score

Train on 28x28 pixel images with and without etch pits with 5-folding

channel, rotational 8-channels

Use training from 28x28 pixel CNN classifiers but can be applied to any size image

Step 2: ~Fully convolutional step

Step 3: Apply threshold and build segmentation map, etchpit candidates are then in the middle of "hot-spots"

Method 3: Fully convolutional networks with U-Net architecture

Provides a method for image segmentation

See for example: U-Net: Convolutional Networks for Biomedical Image Segmentation, Olaf Ronnerberger, Phillip Fischer, Thomas Brox, Medical Image Computing and Computer-Assisted Intervention (MICCAI), Springer, LNCS, Vol.9351: 234--241, 2015

Method 3: Fully convolutional networks with U-Net architecture

Train on a set of images with and without LHC background – full foil images with 9 channels

Preliminary Results CNN Classifiers

Channel	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	Average	Std Dev
Backlit	97.29	96.45	97.08	97.50	97.29	97.12	0.36
Darkfield	99.79	99.79	99.16	99.38	99.58	99.54	0.24
Rotational	99.79	99.58	99.58	99.38	99.58	99.58	0.13

Table 7.6: Pb CNN validation accuracy % (fragments included in training data)

Channel	False positive rate	False negative rate
Backlit	2.41	3.33
Darkfield	0.50	0.42
Rotational	0.67	0.167

Table 7.9: False positive, False negative rates % (fragments included) 0.5 working point.

Performance evaluated on half of the data set kept aside for this purpose

Use spatial matching between "clean" and "exposed" sheets to measure FP and FN rates

Preliminary Results

	U Net	DCC	FCN (Simple)	FCN (Comb.)
True positives (correct detection)	1155	1046	980	1019
False positives (incorrect detection)	29	28	70	175
False negatives (Missed detections)	65	170	175	214
Total predicted	1184	1074	1050	972
Total true etch pits	1242	1242	1194	1194
Identification Eff	93%	84%	82%	85%

Performance evaluated on half of the data set kept aside for this purpose

Use spatial matching between "clean" and "exposed" sheets to measure FP and FN rates

Outlook

	U Net	DCC	FCN (Simple)	FCN (Comb.)
True positives (correct detection)	1155	1046	980	1019
False positives (incorrect detection)	29	28	70	175
False negatives (Missed detections)	65	170	175	214
Total predicted	1184	1074	1050	972
Total true etch pits	1242	1242	1194	1194
Identification Eff	93%	84%	82%	85%

Machine Learning techniques used to successfully identify etch pits

Work in progress:

Still working on harmonising the methods Comparison of which candidates are misidentified by each algorithm Evaluate the impact of the surface Paper in preparation

Future Work

Run with automated scanning of images – could use candidate identification to do adaptive scanning – speed up the scanning process

