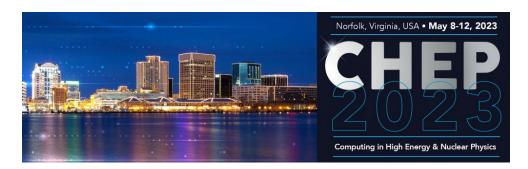


Transformers for Generalized Fast Shower Simulation

Renato Cardoso¹, Nadya Chernyavskaya¹, Kristina Jaruskova¹, Witek Pokorski¹, <u>Piyush Raikwar</u>¹, Dalila Salamani¹, Mudhakar Srivatsa², Kalliopi Tsolaki¹, Sofia Vallecorsa¹, Anna Zaborowska¹

¹CERN, Geneva, Switzerland ²IBM T. J. Watson Research Center, Yorktown Heights, NY USA



Foundation models

Realistic photo of wall-e on the streets of London

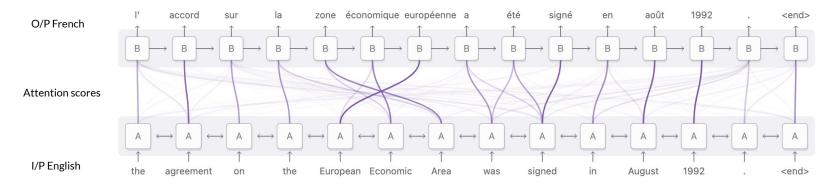
https://dalle2.gallery

- The idea of foundation models started from very large pre-trained language models.
- Examples:
 - BERT, GPT-3, ChatGPT (Generative language models)
 - DALL-E, DALL-E 2, Imagen (Text to Image models)
- These models are typically **trained on very large & diverse datasets and variety of tasks** allowing them to learn patterns and represent common concepts and relationships.
- Generally, their architecture is transformer-based.

Motivation

- Development of machine learning models for fast shower simulation is computationally expensive.
- Moreover, designing model for each experiment requires dedicated expertise.
- Therefore, train once, then adapt to new detectors, quickly.
- **Transformers** as building blocks in foundation models:
 - A **generalized architecture** that works with any type of data, e.g., text, images, audio, etc.
 - Models long-range dependencies (Attention mechanism).

Attention in transformers



- **Dynamically focuses on important parts** in the input.
- Helps in modelling correlations between energy deposits.

Our roadmap

1. Check if the transformers can learn good representations of our shower data.

- Build a generative model for fast shower simulation. 2. Diffusion 2.

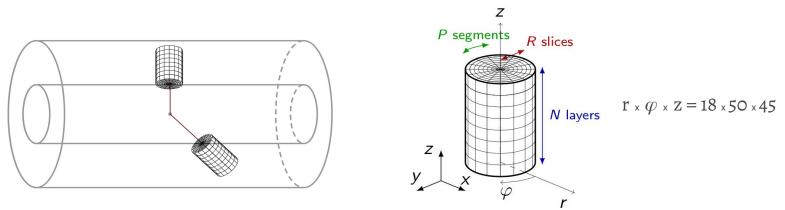
Scale in both model (size) and dataset (size & variety). 3.

Final goal - A generalizable foundation model for fast simulation adaptable to new data

Dataset

GEANT4

We utilize a dataset similar¹ to "CaloChallenge Dataset 3". (Talk at CHEP'23)

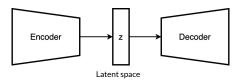


For the shown preliminary results, we use the following subset (~100k samples):

- Angle of incident e⁻ = 70°, 80°, 90°
- Energy of incident e⁻ = 64, 128, 256 GeV
- Sampling calorimeter with silicon and tungsten layers² (SiW)

6

Variational autoencoder (VAE)



Train first

Autoregressive model architecture

Two-stage model (both models have transformer-based architecture):

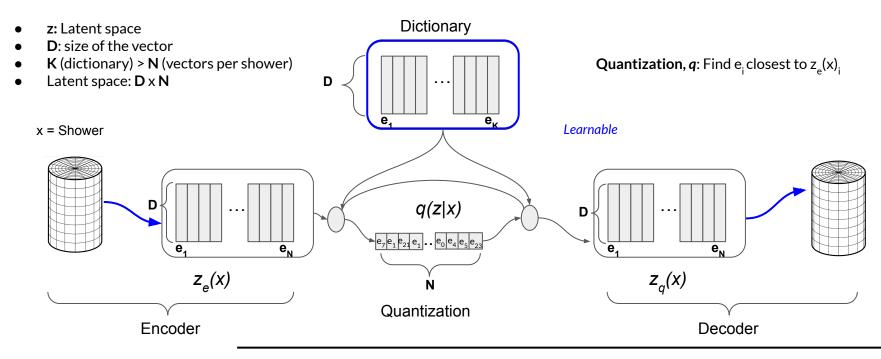
- 1. Vector Quantized Variational Autoencoder (VQ-VAE)
 - An autoencoder with discrete latent space.
 - Compresses and decompresses the shower to and from the latent space.
 - \circ Thus, reduces the computational burden on the 2nd stage.

2. Autoregressive prior

- Unlike VAE, VQ-VAE cannot generate new samples¹.
- Hence, an autoregressive prior to learn the latent space distribution.

VQ-VAE

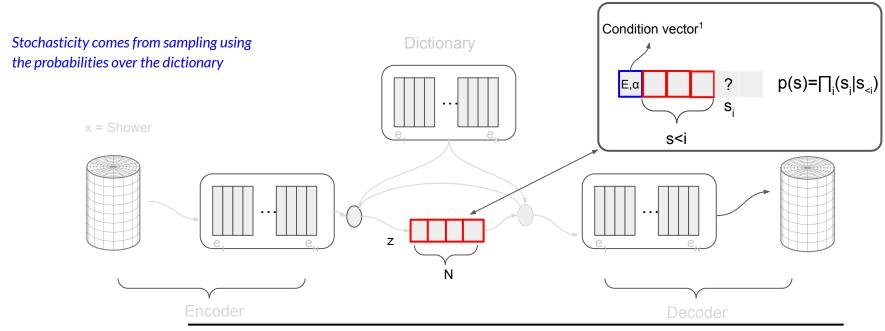
Maps the input to and from a finite set of vectors (latent space).



Autoregressive prior

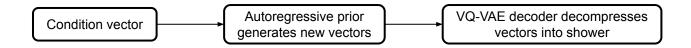
Given previous vectors, predict the next vector.

The goal is to mimic VQ-VAE's dictionary vector distribution.



¹Condition vector ([energy, angle, (+ detector, position offset)]) projected via a linear layer of dimension D.

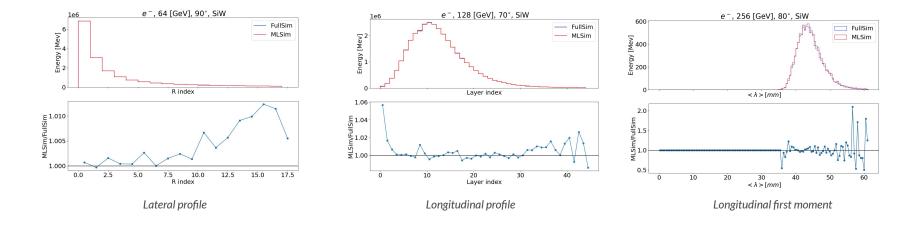
Generative model



Adaptation of generative model for new data:

- Autoregressive prior is fine-tuned on the new detector's data.
- We believe VQ-VAE (thus also dictionary) would become robust with more data and should remain frozen. (Needs to be investigated)

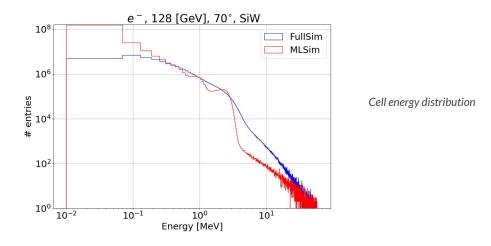
Results - VQVAE



VQ-VAE was able to model lateral & longitudinal profiles,

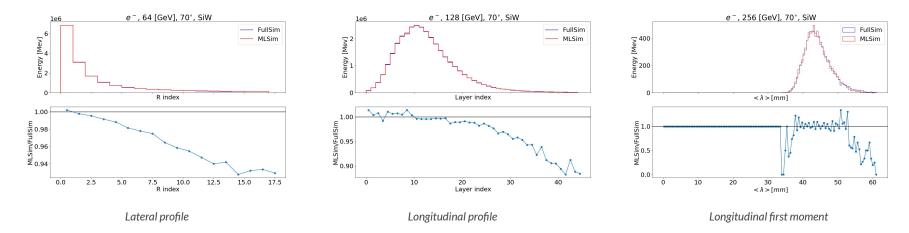
first & second moments really well.

Results - VQVAE



- Accurate modelling of cell energy distribution is in progress. Currently leads to *blurry showers*.
- Introducing a GAN discriminator should help in properly modelling the cell energy distribution. (Next step)
- This also limits the autoregressive prior as VQ-VAE acts like an upper-bound.

Results - Autoregressive prior



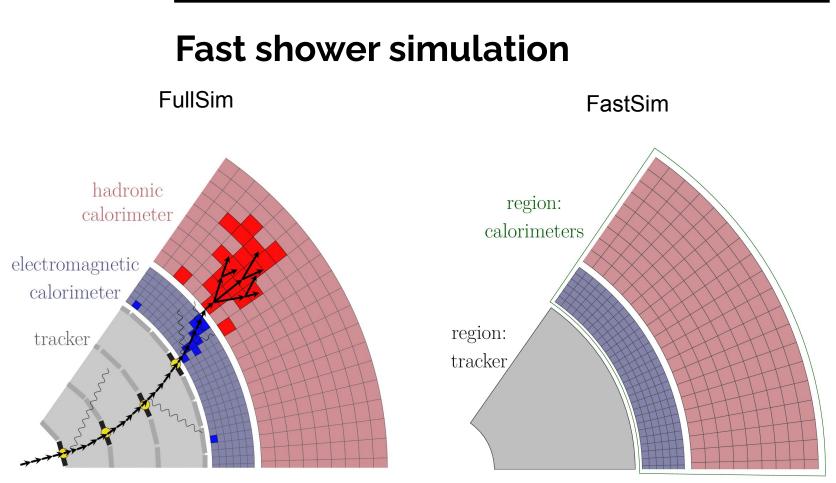
- Autoregressive prior mimics the VQ-VAE vector distribution fairly well.
- The longitudinal & lateral profiles deviate at the tail due to uneven distribution of dictionary vectors.
- This should be overcome by using standard tricks to improve any classification model. (Next step)

Conclusion

- Proposed a transformer-based generative model for fast simulation.
- This is a work in progress and we obtained promising preliminary results.
- We have several potential ideas to improve VQ-VAE and Autoregressive prior, e.g., GAN discriminator, Gumbel-Softmax quantizer, multi-scale architectures, which are under investigation.
- In parallel, we are exploring the diffusion model which has proven to be promising for images.
- One of the main future work is to conduct a large scale training and analyze the generalization capability of the model.

Thank you for listening! Questions?

piyush.raikwar@cern.ch

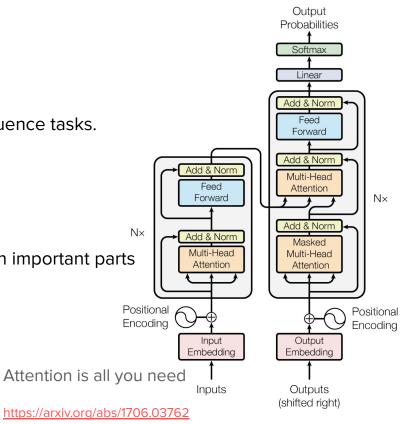


Dataset

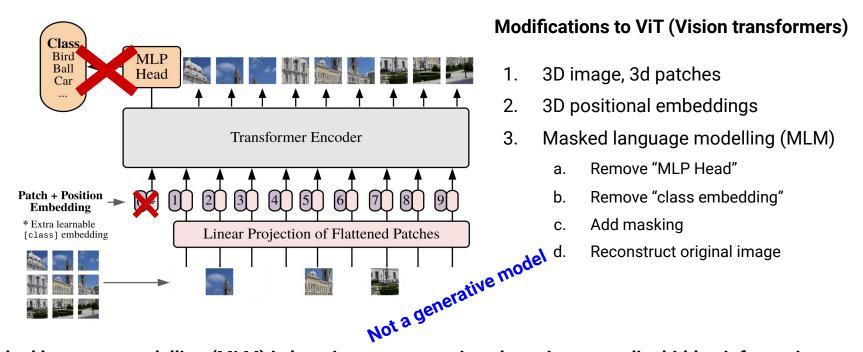
- High Granularity Electromagnetic
 <u>Calorimeter Shower Images</u> [zenodo]
 - Energy = 1 GeV 1 TeV
 - Angle = 50° 90°
 - Geometries = SiW, SciPb
 - ~10,000 events each

Transformer

- Proposed for sequence-to-sequence tasks.
- I/O is any type of sequences.
- Encoder-Decoder blocks.
- Positional embeddings.
- Attention: Dynamically focus on important parts in the input.
- Multi-headed attention.



Self-supervised training

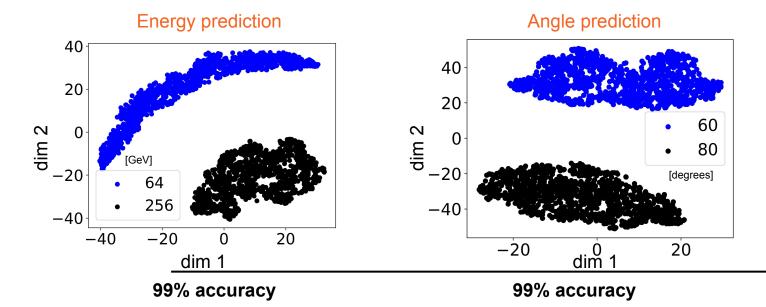


Masked language modelling (MLM) is learning representations by trying to predict hidden information.

Checking representations

Q: How to validate that the transformer model is learning a good representation of our shower data?

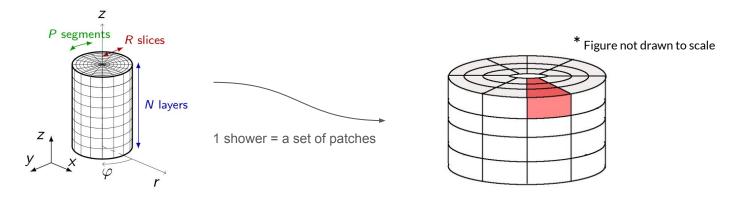
A : Use a "fake" downstream task: predict the energy/angle of the incoming particle using the transformer's representation



From shower to 3d sequence

Transformers needs the input to be in the form of a sequence. Therefore,

- Patches are formed by making splits in r, φ and z direction
- Patch configuration: 1 patch in r, 10 in φ and 15 in z



 $\mathbf{r} \times \boldsymbol{\varphi} \times \mathbf{Z} = 18 \times 50 \times 45$

Patch size $r \times \varphi \times z = 18 \times 5 \times 3$

Positional embeddings

Transformers are permutation invariant. Positional embeddings gives an understanding of position to the model.

Explored

- 1D learnable keras embedding layer.
- Fixed 3D positional embeddings
 - Alternate sine-cosine.
 - Each direction takes 1/3rd of the embedding dimensions.
- Phi-rollover

Observation

• Fixed 3D positional embeddings perform better (*default*).

Preprocessing & Loss function

Preprocessing

Division by energy value of the incident particle.

Loss function

- VQVAE: Binary crossentropy + VQVAE specific losses
- Autoregressive prior: Crossentropy

Two stages

- VQ-VAE is not a generative model (discrete latent space).
- Hence, needs autoregressive prior to model to learn the latent space.
- Autoregressive prior due to sampling is a generative model.
- Autoregressive prior cannot be used alone:
 - It needs to predict a class. We have continuous energy deposits.
 - Sequence (voxels) would be too long.
- Since autoregressive prior needs to predict a class, it needs a discrete (finite) latent space from the autoencoder. Hence, VQ-VAE over VAE.
- TLDR both VQ-VAE and autoregressive prior depends on one another.