
Transformers for Generalized Fast Shower Simulation
Renato Cardoso1, Nadya Chernyavskaya1, Kristina Jaruskova1, Witek Pokorski1, Piyush Raikwar1, Dalila Salamani1, 

Mudhakar Srivatsa2, Kalliopi Tsolaki1, Sofia Vallecorsa1, Anna Zaborowska1

1CERN, Geneva, Switzerland
2IBM T. J. Watson Research Center, Yorktown Heights, NY USA

1



Foundation models

● The idea of foundation models started from very large pre-trained 

language models.

● Examples:

○ BERT, GPT-3, ChatGPT (Generative language models)

○ DALL-E, DALL-E 2, Imagen (Text to Image models)

● These models are typically trained on very large & diverse 

datasets and variety of tasks allowing them to learn patterns and 

represent common concepts and relationships.

● Generally, their architecture is transformer-based.

Realistic photo of wall-e on 
the streets of London

https://dalle2.gallery
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Motivation
● Development of machine learning models for fast shower simulation is computationally 

expensive.

● Moreover, designing model for each experiment requires dedicated expertise.

● Therefore, train once, then adapt to new detectors, quickly.

● Transformers as building blocks in foundation models:

○ A generalized architecture that works with any type of data, e.g., text, images, 

audio, etc.

○ Models long-range dependencies (Attention mechanism).
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Attention in transformers

● Dynamically focuses on important parts in the input.

● Helps in modelling correlations between energy deposits.

4Vaswani et al. Attention is All you Needhttps://distill.pub/2016/augmented-rnns/
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https://arxiv.org/abs/1706.03762
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Our roadmap

Final goal - A generalizable foundation model for fast simulation adaptable to new data

1. Check if the transformers can learn good representations 

of our shower data.

2. Build a generative model for fast shower simulation.

3. Scale in both model (size) and dataset (size & variety).

1. Autoregressive

2. Diffusion
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Dataset
We utilize a dataset similar1 to “CaloChallenge Dataset 3”. (Talk at CHEP’23)

r x 𝜑 x z = 18 x 50 x 45

For the shown preliminary results, we use the following subset (~100k samples):

● Angle of incident e- = 70°, 80°, 90°

● Energy of incident e- = 64, 128, 256 GeV

● Sampling calorimeter with silicon and tungsten layers2 (SiW)

61More incident angles and discrete energy spectrum
2Layer thickness: 0.3 mm + 1.4 mm for Si & W respectively

https://zenodo.org/record/6082201#.ZFENYexBydY
https://indico.jlab.org/event/459/contributions/11731/


Autoregressive model architecture

Two-stage model (both models have transformer-based architecture):

1. Vector Quantized Variational Autoencoder (VQ-VAE)

○ An autoencoder with discrete latent space.

○ Compresses and decompresses the shower to and from the latent space.

○ Thus, reduces the computational burden on the 2nd stage.

2. Autoregressive prior

○ Unlike VAE, VQ-VAE cannot generate new samples1.

○ Hence, an autoregressive prior to learn the latent space distribution.

71The latent space is discrete instead of Gaussian, thus not straightforward to sample from.

Train first

Train later keeping 

VQVAE frozen

Variational autoencoder (VAE)

Latent space



VQ-VAE
Maps the input to and from a finite set of vectors (latent space).
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● z: Latent space
● D: size of the vector
● K (dictionary) > N (vectors per shower)
● Latent space: D x N

Quantization, q: Find e
i 
closest to z

e
(x)

i

8Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learning, 2018
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Autoregressive prior
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Stochasticity comes from sampling using 
the probabilities over the dictionary

91Condition vector ([energy, angle, (+ detector, position offset)]) projected via a linear layer of dimension D.

Given previous vectors, predict the next vector.
The goal is to mimic VQ-VAE’s dictionary vector distribution.



Generative model

Adaptation of generative model for new data:

● Autoregressive prior is fine-tuned on the new detector’s data.

● We believe VQ-VAE (thus also dictionary) would become robust with more data and 

should remain frozen. (Needs to be investigated)
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Condition vector VQ-VAE decoder decompresses 
vectors into shower

Autoregressive prior 
generates new vectors



Results - VQVAE
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VQ-VAE was able to model lateral & longitudinal profiles, 

first & second moments really well.

Lateral profile Longitudinal first momentLongitudinal profile



Results - VQVAE

● Accurate modelling of cell energy distribution is in progress. Currently leads to blurry showers.

● Introducing a GAN discriminator should help in properly modelling the cell energy distribution. 

(Next step)

● This also limits the autoregressive prior as VQ-VAE acts like an upper-bound.

12

Cell energy distribution



Results - Autoregressive prior
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● Autoregressive prior mimics the VQ-VAE vector distribution fairly well.

● The longitudinal & lateral profiles deviate at the tail due to uneven distribution of 

dictionary vectors.

● This should be overcome by using standard tricks to improve any classification model. 

(Next step)

Lateral profile Longitudinal first momentLongitudinal profile



Conclusion

● Proposed a transformer-based generative model for fast simulation.

● This is a work in progress and we obtained promising preliminary results.

● We have several potential ideas to improve VQ-VAE and Autoregressive 

prior, e.g., GAN discriminator, Gumbel-Softmax quantizer, multi-scale 

architectures, which are under investigation.

● In parallel, we are exploring the diffusion model which has proven to be 

promising for images.

● One of the main future work is to conduct a large scale training and analyze 

the generalization capability of the model.

14



Thank you for listening!

Questions?

piyush.raikwar@cern.ch
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Backup
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Fast shower simulation
FullSim FastSim 
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Dataset

● High Granularity Electromagnetic 

Calorimeter Shower Images [zenodo]
○ Energy = 1 GeV - 1 TeV

○ Angle = 50° - 90°

○ Geometries = SiW, SciPb

○ ~10, 000 events each
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https://zenodo.org/record/6082201#.Y3q093bMJab
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Transformer

Attention is all you need

https://arxiv.org/abs/1706.03762

● Proposed for sequence-to-sequence tasks.

● I/O is any type of sequences.

● Encoder-Decoder blocks.

● Positional embeddings.

● Attention: Dynamically focus on important parts 

in the input.

● Multi-headed attention.
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https://arxiv.org/abs/1706.03762
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Self-supervised training
Modifications to ViT (Vision transformers)

1. 3D image, 3d patches

2. 3D positional embeddings

Masked language modelling (MLM) is learning representations by trying to predict hidden information.

3. Masked language modelling (MLM)
a. Remove “MLP Head”

b. Remove “class embedding”

c. Add masking

d. Reconstruct original image

Not a generative model
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Energy prediction

dim 1
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99% accuracy

Angle prediction

dim 1
di

m
 2

99% accuracy

Q : How to validate that the transformer model is learning a good representation of our shower data? 

A : Use a “fake” downstream task: predict the energy/angle of the incoming particle using the transformer’s 

representation 

[GeV]
[degrees]

Checking representations



From shower to 3d sequence
Transformers needs the input to be in the form of a sequence. Therefore,

● Patches are formed by making splits in r, 𝜑 and z direction

● Patch configuration: 1 patch in r, 10 in 𝜑 and 15 in z

r x 𝜑 x z = 18 x 50 x 45 Patch size r x 𝜑 x z =  18 x 5 x 3

1 shower = a set of patches

* Figure not drawn to scale
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Positional embeddings
Transformers are permutation invariant. Positional embeddings 

gives an understanding of position to the model.

Explored

● 1D learnable keras embedding layer.

● Fixed 3D positional embeddings
○ Alternate sine-cosine.

○ Each direction takes 1/3rd of the embedding 

dimensions.

● Phi-rollover

23

Observation

● Fixed 3D positional embeddings perform better 

(default).



Preprocessing & Loss function

Preprocessing

 Division by energy value of the incident particle.

Loss function

● VQVAE: Binary crossentropy + VQVAE specific losses

● Autoregressive prior: Crossentropy
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Two stages
● VQ-VAE is not a generative model (discrete latent space).

● Hence, needs autoregressive prior to model to learn the latent 

space.

● Autoregressive prior due to sampling is a generative model.

● Autoregressive prior cannot be used alone:
○ It needs to predict a class. We have continuous energy deposits.

○ Sequence (voxels) would be too long.

● Since autoregressive prior needs to predict a class, it needs a 

discrete (finite) latent space from the autoencoder. Hence, VQ-VAE 

over VAE.

● TLDR - both VQ-VAE and autoregressive prior depends on one 
another.
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