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Foundation models

e Theidea of foundation models started from very large pre-trained
language models.
e Examples:

o  BERT, GPT-3, ChatGPT (Generative language models)
o  DALL-E, DALL-E 2, Imagen (Text to Image models)

e These models are typically trained on very large & diverse
datasets and variety of tasks allowing them to learn patterns and
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represent common concepts and relationships.
https://dalle2.gallery

Generally, their architecture is transformer-based.



https://dalle2.gallery

Motivation

e Development of machine learning models for fast shower simulation is computationally
expensive.
e Moreover, designing model for each experiment requires dedicated expertise.

e Therefore, train once, then adapt to new detectors, quickly.

e Transformers as building blocks in foundation models:
o Ageneralized architecture that works with any type of data, e.g., text, images,
audio, etc.

o  Models long-range dependencies (Attention mechanism).




Attention in transformers
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e Dynamically focuses on important parts in the input.

e Helpsin modelling correlations between energy deposits.

https://distill.pub/2016/augmented-rnns/ Vaswani et al. Attention is All you Need



https://arxiv.org/abs/1706.03762
https://distill.pub/2016/augmented-rnns/

Our roadmap

‘/ 1. Check if the transformers can learn good representations
of our shower data.
1. Autoregressive

ra 2. Build a generative model for fast shower simulation.
—— 2. Diffusion

Scale in both model (size) and dataset (size & variety).
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Final goal - A generalizable foundation model for fast simulation adaptable to new data




Dataset

5\ GE:&!‘!J4 We utilize a dataset similar® to “CaloChallenge Dataset 3”. (Talk at CHEP’23)
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For the shown preliminary results, we use the following subset (~100k samples):
e Angle of incident e = 70°, 80°, 90°
e Energy of incident e = 64, 128, 256 GeV

e  Sampling calorimeter with silicon and tungsten layers? (SiW)

IMore incident angles and discrete energy spectrum
2Layer thickness: 0.3 mm + 1.4 mm for Si & W respectively


https://zenodo.org/record/6082201#.ZFENYexBydY
https://indico.jlab.org/event/459/contributions/11731/

Variational autoencoder (VAE)

m I - Autoregressive model architecture

Decoder

Latent space

Two-stage model (both models have transformer-based architecture):

1. Vector Quantized Variational Autoencoder (VQ-VAE)

1((1-\“(\‘5‘ o  Anautoencoder with discrete latent space.
o  Compresses and decompresses the shower to and from the latent space.
o  Thus, reduces the computational burden on the 2" stage.
( ee(f‘“% 2. Autoregressive prior
130;\;\:;@10“ o Unlike VAE, VQ-VAE cannot generate new samples?.

o  Hence, an autoregressive prior to learn the latent space distribution.

1The latent space is discrete instead of Gaussian, thus not straightforward to sample from.



VQ-VAE

Maps the input to and from a finite set of vectors (latent space).

z: Latent space Dictionary
D: size of the vector
K (dictionary) > N (vectors per shower)

Latent space: D xN

X = Shower
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Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learning, 2018



https://arxiv.org/abs/1711.00937

Autoregressive prior

Given previous vectors, predict the next vector.
The goal is to mimic VQ-VAE’s dictionary vector distribution.

( )
Condition vector’
Stochasticity comes from sampling using
the probabilities over the dictionary /
E.a ? p(s)=[1(s/[s.)
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1Condition vector ([energy, angle, (+ detector, position offset)]) projected via a linear layer of dimension D. 9




Generative model

i Autoregressive prior VQ-VAE decoder decompresses
Condition vector :
generates new vectors vectors into shower

Adaptation of generative model for new data:

e Autoregressive prior is fine-tuned on the new detector’s data.
e We believe VQ-VAE (thus also dictionary) would become robust with more data and

should remain frozen. (Needs to be investigated)
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Results - VQVAE
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VQ-VAE was able to model lateral & longitudinal profiles,

first & second moments really well.




Results - VQVAE
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e  Accurate modelling of cell energy distribution is in progress. Currently leads to blurry showers.
e Introducing a GAN discriminator should help in properly modelling the cell energy distribution.

(Next step)

e  Thisalso limits the autoregressive prior as VQ-VAE acts like an upper-bound.

12



Results - Autoregressive prior
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Autoregressive prior mimics the VQ-VAE vector distribution fairly well.

The longitudinal & lateral profiles deviate at the tail due to uneven distribution of
dictionary vectors.

This should be overcome by using standard tricks to improve any classification model.
(Next step)
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Conclusion

e Proposed atransformer-based generative model for fast simulation.

e Thisisaworkin progress and we obtained promising preliminary results.

e We have several potential ideas to improve VQ-VAE and Autoregressive
prior, e.g., GAN discriminator, Gumbel-Softmax quantizer, multi-scale
architectures, which are under investigation.

e Inparallel, we are exploring the diffusion model which has proven to be
promising for images.

e One of the main future work is to conduct a large scale training and analyze

the generalization capability of the model.
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Thank you for listening!

Questions?

pivush.raikwar@cern.ch
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Fast shower simulation
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Dataset

e High Granularity Electromagnetic

Calorimeter Shower Images [zenodo]

O

O

O

Energy =1 GeV-1TeV
Angle = 50° - 90°
Geometries = SiW, SciPb

~10, 000 events each
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https://zenodo.org/record/6082201#.Y3q093bMJab
https://zenodo.org/record/6082201#.Y3q093bMJab

Transformer

e Proposed for sequence-to-sequence tasks.
e |/Ois any type of sequences.
e Encoder-Decoder blocks.

e Positional embeddings.

e Attention: Dynamically focus on important parts

in the input.

e Multi-headed attention.

Output

Probabilities

Attention is all you need
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https://arxiv.ora/abs/1706.03762
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https://arxiv.org/abs/1706.03762

Self-supervised training

Modifications to ViT (Vision transformers)

3D image, 3d patches

2. 3D positional embeddings

Transformer Encoder

Masked language modelling (MLM)

a. Remove “MLP Head”
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Masked language modelling (MLM) is learning representations by trying to predict hidden information.




Checking representations

Q : How to validate that the transformer model is learning a good representation of our shower data?

A : Use a “fake” downstream task: predict the energy/angle of the incoming particle using the transformer’s

representation

dim 2

dim 1

dim 2

—20 0 20
dim 1

99% accuracy

99% accuracy 21



From shower to 3d sequence

Transformers needs the input to be in the form of a sequence. Therefore,

e Patches are formed by making splitsinr, ¢ and z direction
e Patch configuration: 1 patchinr,10inpand 15inz

X .
Figure not drawn to scale

N layers \

1 shower = a set of patches
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Positional embeddings

Transformers are permutation invariant. Positional embeddings

gives an understanding of position to the model.
Explored

e 1D learnable keras embedding layer.

e Fixed 3D positional embeddings
o Alternate sine-cosine.
o Each direction takes 1/3™ of the embedding

dimensions.

e Phi-rollover

Observation

e Fixed 3D positional embeddings perform better
(default).
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Preprocessing & Loss function

Preprocessing

Division by energy value of the incident particle.

Loss function

e VQVAE: Binary crossentropy + VQVAE specific losses

e Autoregressive prior: Crossentropy

24



Two stages

VQ-VAE is not a generative model (discrete latent space).
Hence, needs autoregressive prior to model to learn the latent
space.

Autoregressive prior due to sampling is a generative model.

Autoregressive prior cannot be used alone:

o Itneedsto predict aclass. We have continuous energy deposits.
o  Sequence (voxels) would be too long.

Since autoregressive prior needs to predict a class, it needs a
discrete (finite) latent space from the autoencoder. Hence, VQ-VAE
over VAE.

TLDR - both VQ-VAE and autoregressive prior depends on one
another.
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