# **Object Condensation Tracking**



Gage DeZoort<sup>1</sup>



Kilian Lieret<sup>1,2</sup>

<sup>1</sup>Princeton University, <sup>2</sup>IRIS-HEP

With contributions from Javier Duarte, Peter Elmer, Isobel Ojalvo, Savannah Thais



# Tracking





# **Tracking with Object Condensation: Vision**



#### Learnt latent space

Hits already clustered by particle; Clusters can be collected trivially

### **Condensation point**

Represents the track, can learn track parameters like pT (WIP)

# **Object condensation in action**

#### 2D latent space; random selection of particles colored

Early simplified study (much fewer hits than in real life)



<u>Click here if video</u> <u>doesn't play</u>

# **Object condensation: Our current pipeline**



# **Object condensation: Training losses**



### **Repulsive loss function**

#### penalizes hits close to other CP

hinge loss: no more repulsion after certain distance repulsion stronger for strong CP CLs



**Background loss function** noise hits should have low CL

Loss functions implemented from Kieseler 2020 (2002.03605)

Latent space

# Some details



- Full event is sectorized in 32 sectors (see <u>2103.16701</u>); 5 random sectors per batch
- Graph construction
  - Currently: Geometric cuts only (see <u>2103.16701</u>)
  - Soon: Comparison to module map
  - Mid term: transitioning to a point cloud network
- Main building block: Interaction Networks (<u>1612.00222</u>)
- Edge classification (EC) performance is vital:
  - Using FocalLoss (<u>https://arxiv.org/abs/1708.02002</u>) for class imbalance
  - Ignoring false negatives for edges connecting  $p_T < 0.9$  GeV hits
  - EC threshold is around maximum attainable MCC (and this is used to rank different ECs)
- Track condensation network starts from edge classification latent space
- **Condensation space** dimension is ~10

### **Metrics**

### Perfect

Cluster contains only hits from one particle and no hits outside of cluster

**LHC** Cluster contains >= 75% hits from one particle

### **Double Majority**

Cluster contains >= 50% hits from one particle and This particle has < 50% of its hits outside



We also evaluate these **metrics at pT thresholds**: pT cut is applied to majority particle of cluster or particle (this is <u>not</u> a truth cut on the data, but simply a efficiency vs pT study)

Reconstructable: >= 3 hits

### Most recent result

Regarding  $\stackrel{\checkmark}{=}$  to  $\stackrel{\checkmark}{=}$  comparisons for HL-LHC benchmarking:

- Evaluated on trackML 2.0 dataset (generated with the ACTS geometry)
- Pixel layers only: This might be a <u>harder</u> problem than using the full detector (very dense regions)!
- Full trackML detector results very soon



No truth cut on pT or other simplification

EC FocalLoss currently set to ignore low  $p_T$  false negatives  $\rightarrow$  lower performance for low  $p_T$ 

# Summary

- Proof of concept for object condensation applied to the HL-LHC tracking challenge without truth cuts
- Promising performance on trackML pixel layer: > 90% of particles with pT > 0.9 GeV are uniquely (double majority) matched to a cluster
- Currently working on on applying to full detector geometry
- Much to be explored: Point cloud networks and more
- Fully open-source framework: Let's make prototyping new architectures for tracking accessible to everyone

| <b>gnn_tracking</b> Public<br>Charged particle tracking with graph neural networks                                                        | github.com/gnn-tracking  |   |         |                     |
|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---|---------|---------------------|
| ● Python 🏠 13 🐴 MIT 😵 7 💽 60 (8 issues need help                                                                                          | ) ᡭᆟ 2 Updated yesterday |   |         |                     |
| hyperparameter_optimization Public<br>Hyperparameter optimization submission & helper scripts<br>● Python ☆ 3 화 MIT 양 0 ⓒ 9 있 0 Updated 4 | -<br>days ago            |   | PyTorch | PyG                 |
| tutorials Public<br>Tutorials for onboarding of the GNN Tracking project<br>● Jupyter Notebook ☆ 3 책 MIT 양 0 ① 1 \$ 0                     | –<br>Updated last week   | ^ | Weigh   | tune<br>ts & Biases |

# Shoutouts: More object condensation



#### Lea Reuter

### Daniel Murnane/Paolo Calafiura

**Object Condensation with "Influencer" approach** 

END-TO-END GEOMETRIC REPRESENTATION LEARNING FOR TRACK RECONSTRUCTION CHEP, NORTHFOLK VA, MAY 9<sup>TH</sup> 2023

PAOLO CALAFIURA FOR DANIEL MURNANE ON BEHALF OF THE EXATRKX PROJECT

THANKS TO THE SCIDAC4-HEP PROJECT HEP DATA ANALYTICS ON HPC





# Backup

### **Point cloud sectorization**



### Architecture

