
Symbolic Regression on FPGAs for Fast
Machine Learning Inference

Ho Fung Tsoi, Adrian Alan Pol, Vladimir Loncar, Ekaterina Govorkova,
Miles Cranmer, Sridhara Dasu, Peter Elmer, Philip Harris, Isobel Ojalvo, Maurizio Pierini

26th International Conference on Computing in High Energy & Nuclear Physics (CHEP 2023)

Norfolk, VA, USA
May 8-12, 2023

1

Background

2This talk is based on the paper 2305.04099

https://arxiv.org/abs/2305.04099

Background

3

L1 trigger at the LHC reduces extreme data rates of O(10) TB/s to a manageable level

• It discards events forever! So we need very precise selection to keep interesting physics events

Ø ML algorithms which can improve sensitivity to rare/new physics

• Strict computing resource constraints and ultra low-latency < O(1) 𝜇s

Ø Algorithms need to be extremely lightweight

Ø Need to run on custom hardware such as FPGAs to achieve nanosecond inference

But always a performance-resource trade-off!

Background

4

Ongoing ML developments at the L1 trigger for LHC Run3 include the anomaly triggers

• Anomaly detection as an unsupervised learning that targets all “rare” events at once

• Search interesting physics events at the trigger level in a model-agnostic way

Ø Challenges: NN-based models can hardly fit to resource/latency constraints without largely compromising accuracy

“Rare” physics
(Higgs, BSM, etc.)

“Background” physics
(QCD, etc.)

Symbolic Regression (SR): a ML technique that seeks to discover analytic
functions that approximate a dataset

Dataset →
input

Big black box

→ Output 𝑓 𝑥 = 𝑥!" − sin 𝑥#𝑥" + 𝑥$log 5 + 𝑥% +⋯Dataset →
input

→ Output

One-line closed form solution

NN SR
vs.

Symbolic regression

5

Offer interpretable results for the underlying problem
• E.g., rediscovering Newton’s law of gravitation from observables 2202.02306

Unlike deep learning models, SR easily generates a set of models on the Pareto front, which allows for
optimizing the performance-resource tradeoff directly

Potential to be highly efficient for resource-constrained production environments
• For low-dim problems: use SR as master model
• For high-dim problems: intermediate compression (e.g., distill a big NN)

https://arxiv.org/abs/2202.02306

High-performance symbolic regression in Python: PySR

Open-source and user-friendly

Based on genetic programming

• Create expression trees

• Trees grow and fittest ones can evolve to next generation

• Mutation and crossbreeding can happen to explore more expressions

Simple and flexible configuration for different use case

• Custom operators, loss, complexity definition, etc.

6

high level synthesis for machine learning

hls4ml: a user-friendly open-source Python package for fast ML inference in FPGAs
Ø Input trained models from standard libraries such as (Q)Keras, PyTorch,… and PySR
Ø Provide an efficient and fast translation to HLS code
Ø User can control model aspects for optimal performance on FPGAs
v Necessary for extreme environments such as LHC L1 trigger where resources are strictly constrained and a max

latency of O(1) 𝜇s is imposed

7https://fastmachinelearning.org/hls4ml/

now PySR!

https://fastmachinelearning.org/hls4ml/

A physics benchmark: HLS4ML LHC Jet dataset publicly available at Zenodo, generated for FastML/HLS4ML studies

• Dataset of boosted jets from simulations of LHC proton-proton collisions (~1M simulated jets)

• Each jet represented by 16 high-level physics-motivated features

• Multiclass classification → {gluon, light-quark, W, Z, top}

Dataset: LHC jet tagging

8

Description of each of the 16 input variables at 1709.08705

https://doi.org/10.5281/zenodo.3602260
https://arxiv.org/abs/1709.08705

Baseline model

• Standard baseline architecture for FastML studies chosen to yield reasonable performance while being
lightweight (sub-100 ns latency)

• Trained quantization aware with QKeras 2006.10159
• Convert to HLS firmware with hls4ml
• Serve as baseline for accuracy and FPGA resource utilization to be compared with SR

9

e.g.,quantized ReLu

Model parameters in fixed numerical precision
and constrained during weight optimization

https://arxiv.org/abs/2006.10159

Plain SR implementation
• Models with single class of math functions

• Polynomial: +, -, x
• Trigonometric: +, -, x, sin(⋅)
• Exponential: +, -, x, Gauss(⋅)=exp(-(⋅)2)
• Logarithmic: +, -, x, log(abs(⋅))

• Model size can be quantified by a measure called complexity
Ø Default complexity for every operator = 1
Ø All operators are equally penalized
Ø Search is configured to find expressions having a complexity up to a max value 𝑐max

• Reduce input dimensions by random forest regressor (PySR built-in functionality). We select 6 out of 16 here

10

Math function approximation with lookup table

11

• Use an array that maps input to
output, thus runtime computation
is replaced by array indexing
operation

• Custom table range and size
• No DSPs allocated if both are

2&

• Every LUT operation requires only 1
clock cycle

Benchmark
To compare

12

Baseline (QAT NN) SR (5-line expressions)

On
§ Classification accuracy
§ FPGA resource utilization

o DSPs
o LUTs
o Inference latency

vs.

Accuracy

• Trigonometric equations, and others, perform very close to NN

• Models with single math class at relatively low complexity can give

comparable accuracy

• Sensitive to function choice, e.g. trigonometric vs. polynomial

• Approximation with lookup tables does not downgrade

performance

13

TrigonometricPolynomial

Resource utilization

14

Polynomial

SR models dramatically reduce latency and resources compared to NN

• Several orders of magnitude improvement in resource usage

• Several times faster

II=1

Resource utilization

15

Logarithmic II=1

5 ns!
SR models dramatically reduce latency and resources compared to NN

• Several orders of magnitude improvement in resource usage

• Several times faster

Latency-aware training

• By default, PySR assigns every operator complexity

to 1, this means all operators are equally penalized

when being added

• Not optimal for FPGA deployment since there is

difference in number of clock cycles (cc) required

• We can re-define operator complexity to the

corresponding no. of cc

• One can also specify a latency budget

• Note that function approximation with lookup tables

is not relevant here since every array indexing

operation needs 1 cc only
16

Operator No. of cc

+ 1

− 1

× 1

log(abs(⋅)) 4

sin(⋅) 8

tan(⋅) 48

cosh(⋅) 8

sinh(⋅) 9

exp(⋅) 3

Evaluated with <16,6> on a Xilinx VU9P FPGA
(xccu9p-flga2577-2-e)

Latency-aware training

17Accuracy Resources and latency
II=1

Summary

• We presented a novel approach of SR utilization in the context of FPGAs
ü Integrated SR into hls4ml
ü Proposed 3 implementation strategies
ü Demonstrated SR can achieve comparable accuracy while using significantly less resources (by

orders of magnitude) and inferring faster (by few multiples), as compared to NN-based model

• Future works (naming only a few)
q NN-based SR to enable quantization-aware training: start from a (sparse) NN with math

operations as activations, trained with QKeras, then prune to yield final expressions
q Use SR as distillation

§ Distill intermediate layers of big models
§ Regress outputs directly

q Investigate SR in problems with high input dimensions
§ Feature engineering
§ Break it into lower dimensions, feed to a hierarchy of localized NNs, then do SR

18

Backup

19

Accuracy

20

Exponential Logarithmic

Resource utilization

21

Trigonometric

SR models dramatically reduce latency and resources compared to NN

• Several orders of magnitude improvement in resource usage

• Several times faster

II=1

Resource utilization

22

Exponential II=1

5 ns!SR models dramatically reduce latency and resources compared to NN

• Several orders of magnitude improvement in resource usage

• Several times faster

