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Symbolic Regression on FPGAs for Fast Machine Learning Inference

Ho Fung Tsoi, Adrian Alan Pol, Vladimir Loncar, Ekaterina Govorkova, Miles Cranmer, Sridhara Dasu, Peter Elmer, Philip
Harris, Isobel Ojalvo, Maurizio Pierini

The high-energy physics community is investigating the feasibility of deploying machine-learning-based solutions on Field-
Programmable Gate Arrays (FPGAs) to improve physics sensitivity while meeting data processing latency limitations. In this
contribution, we introduce a novel end-to-end procedure that utilizes a machine learning technique called symbolic regression (SR). It
searches equation space to discover algebraic relations approximating a dataset. We use PySR (software for uncovering these
expressions based on evolutionary algorithm) and extend the functionality of hls4ml (a package for machine learning inference in
FPGAs) to support PySR-generated expressions for resource-constrained production environments. Deep learning models often
optimise the top metric by pinning the network size because vast hyperparameter space prevents extensive neural architecture search.
Conversely, SR selects a set of models on the Pareto front, which allows for optimising the performance-resource tradeoff directly. By
embedding symbolic forms, our implementation can dramatically reduce the computational resources needed to perform critical tasks.
We validate our procedure on a physics benchmark: multiclass classification of jets produced in simulated proton-proton collisions at
the CERN Large Hadron Collider, and show that we approximate a 3-layer neural network with an inference model that has as low as 5
ns execution time (a reduction by a factor of 13) and over 90% approximation accuracy.

This talk is based on the paper 2305.04099 2
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Background

Det.e.ctor L1 trigger lgh-Level Dats
collisions Trigger Analysis
40,000,000 100,000 1,000
events/sec events/sec events/sec

L1 trigger at the LHC reduces extreme data rates of O(10) TB/s to a manageable level

* |t discards events forever! So we need very precise selection to keep interesting physics events
» ML algorithms which can improve sensitivity to rare/new physics

e Strict computing resource constraints and ultra low-latency < O(1) us
» Algorithms need to be extremely lightweight
» Need to run on custom hardware such as FPGAs to achieve nanosecond inference

But always a performance-resource trade-off!



Background

“Rare” physics
(Higgs, BSM, etc.)

“Background” physics
Ongoing ML developments at the L1 trigger for LHC Run3 include the anomaly triggers (QCD, etc.)

 Anomaly detection as an unsupervised learning that targets all “rare” events at once
* Search interesting physics events at the trigger level in a model-agnostic way

» Challenges: NN-based models can hardly fit to resource/latency constraints without largely compromising accuracy



Symbolic regression

Symbolic Regression (SR): a ML technique that seeks to discover analytic
functions that approximate a dataset

NN SR
VS.

— Output | | Dataset —» f(x) = x5 — sin(x;x3) + x,log(5 + x4) + ---— Output
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Big black box One-line closed form solution

Offer interpretable results for the underlying problem
 E.g., rediscovering Newton’s law of gravitation from observables 2202.02306

Unlike deep learning models, SR easily generates a set of models on the Pareto front, which allows for
optimizing the performance-resource tradeoff directly

Potential to be highly efficient for resource-constrained production environments
* For low-dim problems: use SR as master model
* For high-dim problems: intermediate compression (e.g., distill a big NN)



https://arxiv.org/abs/2202.02306

High-performance symbolic regression in Python: PySR

High-Performance Symbolic Regression in Python

PySR

Open-source and user-friendly
Based on genetic programming

* Create expression trees

* Trees grow and fittest ones can evolve to next generation
* Mutation and crossbreeding can happen to explore more expressions
Simple and flexible configuration for different use case

 Custom operators, loss, complexity definition, etc.

from pysr import PySRRegressor

model = PySRRegressor(

niterations=40, # < Increase me for
binary_operators=["+", "%"],
unary_operators=|

“cos",

“exp",

“*sin",
“"inv(x) = 1/x",

# ~ Custom operator

1,
extra_sympy_mappings={"inv": lambda x: 1 / x},

# ~ Define operator for SymPy as well
loss="loss(prediction, target) = (prediction - target)~2",

# ~ Custom loss function (julia syntax)



high level synthesis for machine learning

his4dml: a user-friendly open-source Python package for fast ML inference in FPGAs

» |Input trained models from standard libraries such as (Q)Keras, PyTorch,... and PySR
» Provide an efficient and fast translation to HLS code

» User can control model aspects for optimal performance on FPGAs

** Necessary for extreme environments such as LHC L1 trigger where resources are strictly constrained and a max
latency of O(1) us is imposed

now PySR!

Keras

TensorFlow /

PyTorch

/ y.?.rc/ \ 3 Co-processing kernel
- hls 4 ml

Machine learning on FPGAs using HLS

compressed
model HLS. —
conversion Custom firmware
- : design
Usual machine learning jf g
software workflow

tune configuration
precision
reuse/pipeline

https://fastmachinelearning.org/hlsdml/ 7



https://fastmachinelearning.org/hls4ml/

Dataset: LHC jet tagging

A physics benchmark: HLS4ML LHC Jet dataset publicly available at Zenodo, generated for FastML/HLS4ML studies

« Dataset of boosted jets from simulations of LHC proton-proton collisions (~¥1M simulated jets)

e Each jet represented by 16 high-level physics-motivated features [ Observables |

e Multiclass classification = {gluon, light-quark, W, Z, top}

MmMDT

Dﬂ=1,2

2
ngﬂ)=(1, 1),(1,2)

Description of each of the 16 input variables at 1709.08705

Y zlogz
Multiplicity



https://doi.org/10.5281/zenodo.3602260
https://arxiv.org/abs/1709.08705

Baseline model

QKeras: a quantization deep learning library for Tensorflow Keras

16 inputs
8
64 nodes
activation: ReLU
8 :
32 nodes ; "
activation: ReLU : 3 5T 'Re’LU T T T 1 ]
ﬁ § E & quant?zed_relu( bits=2, integer:O )
32 nodes L i s, gt
activation: ReLLU ‘i E 1.50F quantized_relu( bits=6, integer=0 )
)= 4 : 3 3
5 ou;put,s s ] ] ]
activation: SoftMax o | €.8.,quantized RelLu | ;
3 Vi -
75_ rE’.
. . . . . 0'50\ [r o
Model parameters in fixed numerical precision " Aq '
: : . L 1 7 ]
and constrained during weight optimization il Vi :
-1I.0 -01.5 0{0 0%5 I.IO 1%5 2?0

Standard baseline architecture for FastML studies chosen to yield reasonable performance while being
lightweight (sub-100 ns latency)

Trained quantization aware with QKeras 2006.10159

Convert to HLS firmware with hls4dml

Serve as baseline for accuracy and FPGA resource utilization to be compared with SR



https://arxiv.org/abs/2006.10159
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Plain SR implementation

Models with single class of math functions

 Polynomial: +, -, x 3
e Trigonometric: +, -, X, sin() ’ﬁ\‘
« Exponential: +, -, x, Gauss(-)=exp(-(-)?) 3

e Logarithmic: +, -, x, log(abs(-))

Model size can be quantified by a measure called complexity

Default complexity for every operator =1 (2-2
All operators are equally penalized

Search is configured to find expressions having a complexity up to a max value c,,,,

Reduce input dimensions by random forest regressor (PySR built-in functionality). We select 6 out of 16 here

Model [ Expression for the ¢ tagger with cp.x = 40 [ AUC

Polynomial | €%~ +0.09mmvpr(2C;  + M> " — muypr — Multiplicity — (1.82C; " — M5 “)(C] ~ — 0.49muypr) —3.22) —0.53 | 0.914
Trigonometric | sin(0.06(3 zlogz)M, ~ — 0.25C;*(~=C}™" +2C;~* — M5~ + Multiplicity — 8.86) — mympr + 0.06Multiplicity — 0.4) | 0.925

Exponential | 0.23C"' (~=mmmpr + Gauss(0.63Multiplicity) + 1) — Gauss(C ') + 0.45C% > — 0.23mumumpr 0.920
+0.23Gauss((4.24 — 1.19C5~")(C?™? — muwpr)) + 0.15
Logarithmic | €%~ — 0.1mmypr(Multiplicity x log(abs(Multiplicity)) + 2.2) — 0.02log(abs(Multiplicity)) 0.923

—0.1(CF2(CF - 1.6ME™ + mynpr + 1.28) — muupr — 0.48)log(abs(C22)) — 0.42

Table 2. Expressions generated by PySR for the ¢ tagger in different models with c,,x = 40. Operator
complexity is set to 1 by default. Constants are rounded to two decimal places here.



Math function approximation with lookup table

—~ 40 T T T T T
S I HLS (12, 6) sin ' ' é HLS (12, 6) tan
= 15- — HLS (12, 6) sin LUT[-8,8:32] 4 —— HLS (12, 6) tan LUT[-4,4;32]
—— HLS (12, 6) sin LUT[-8,8;256] 30 —— HLS (12, 6) tan LUT[-4,4:256] n
ol | * Use an array that maps input to
output, thus runtime computation
10'/‘)_ is replaced by array indexing
ok ﬁé,/z operation
_.10-- iy
e Custom table range and size
-20f . )
* No DSPs allocated if both are
=303 =3 0 2 4 21
< 0.50— | S
+ = | . .
2 o2sf 1 B * Every LUT operation requires only 1
|
I - -
5 000 0 clock cycle
I —0.25F 9 I
—0.50 ! 1

—5

Figure 1. The sine (left) and tangent (right) functions evaluated with and without the use of LUTs,
implemented in HLS with precision (12, 6), i.e. 12 bits variable with 6 integer bits. The LUT notation
reads: [range start, range end; table size] for table definition. The lower panel shows the function

deviation from the truth.
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Benchmark

To compare
SR (5-line expressions)
Tagger | Expression for the trigonometric model with ¢y = 20 | AUC
g sin(=2C"~" +0.31C"~" + myumpr + Multiplicity — 0.09Multiplicity” — 0.79) 0.897
q —0.33(sin(Mmypr) — 1.54)(sin(-C; " + €%~ + Multiplicity) — 0.81)sin(mmvpr) — 0.81 | 0.853
t sin(C~" + O — muvipr + 0.22(C57% - 0.29)(-C%~ + 5" — Multiplicity) — 0.68) | 0.920
: | VS w —~0.31(Multiplicity + (2.09 — Multiplicity)sin(8.02C~ + 0.98)) — 0.5 0.877
) 1 z (sin(4.84mumypr) + 0.59)sin(Mupmpr + 1.14)sin(CF = + 4.84mumypr) — 0.94 0.866
Table 1. Expressions generated by PySR for the trigonometric model with c,,, = 20. Operator
domplexity is set to 1 by default. Constants are rounded to two decimal places for readability. Area
under the receiver operating characteristic (ROC) curve, or AUC, is reported.

On

= (lassification accuracy

" FPGA resource utilization
o DSPs
o LUTs

o Inference latency 12
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Trigonometric equations, and others, perform very close to NN
Models with single math class at relatively low complexity can give
comparable accuracy

Sensitive to function choice, e.g. trigonometric vs. polynomial
Approximation with lookup tables does not downgrade

performance
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DSPs

Resource utilization
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SR models dramatically reduce latency and resources compared to NN
* Several orders of magnitude improvement in resource usage

 Several times faster
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DSPs
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SR models dramatically reduce latency and resources compared to NN

* Several orders of magnitude improvement in resource usage

 Several times faster
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Latency-aware training

By default, PySR assigns every operator complexity
to 1, this means all operators are equally penalized
when being added

Not optimal for FPGA deployment since there is
difference in number of clock cycles (cc) required
We can re-define operator complexity to the
corresponding no. of cc

One can also specify a latency budget

Note that function approximation with lookup tables
is not relevant here since every array indexing

operation needs 1 cc only

Operator | No. of cc
+ 1
— 1
X 1
log(abs(+)) 4
sin(-) 8
tan(-) 48
cosh(-) 8
sinh(+) 9
exp(-) 3

Evaluated with <16,6> on a Xilinx VU9P FPGA
(xccu9p-flga2577-2-e)

16
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Relative accuracy [SR / QAT NN
© © o o o o
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o
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N

— 0.99F

Latency-aware training

Operator complexity |

Expression for the ¢ tagger with cpax = 40

[ AUC

All 1’s (PySR default)

0.11(C"=" + €= + log(abs(C} ™)) — 0.48myupr — 0.05Multiplicity(Multiplicity + log(abs(mumypr)))

—sin(—=C?~ + 0.14C5~ mumpr) + 0.11sinh(CP~") - 0.24

0.930

No. of clock cycles
at (16, 6)

0.04((3 zlogz) + C~ + C~' — mumpr — (Multiplicity — 0.2)(Multiplicity + log(abs(C’))))
—sin(-C?~" — %7 + 1.23mpypr + 0.58)

0.924

No. of clock cycles
at (18, 8)

0.04Mu1ﬁ3ﬁcity(_c,;’f=2(cf=2 — Mmympr) — Multiplicity — log(abs(C? (3 zlog 2) + 0.23))))
—sin(~C?~" — %7 + 1.19mmvpr + 0.61)

0.926

Table 3. Expressions generated by PySR for the ¢ tagger with c,,x = 40, implemented with and without
LAT. Constants are rounded to two decimal places for readability.
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Summary

* We presented a novel approach of SR utilization in the context of FPGAs

v Integrated SR into his4ml

v" Proposed 3 implementation strategies

v' Demonstrated SR can achieve comparable accuracy while using significantly less resources (by
orders of magnitude) and inferring faster (by few multiples), as compared to NN-based model

e Future works (naming only a few)

(J NN-based SR to enable quantization-aware training: start from a (sparse) NN with math
operations as activations, trained with QKeras, then prune to yield final expressions
[ Use SR as distillation
= Distill intermediate layers of big models
= Regress outputs directly
O Investigate SR in problems with high input dimensions
= Feature engineering
= Break it into lower dimensions, feed to a hierarchy of localized NNs, then do SR
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SR models dramatically reduce latency and resources compared to NN

* Several orders of magnitude improvement in resource usage

 Several times faster
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SR models dramatically reduce latency and resources compared to NN

* Several orders of magnitude improvement in resource usage

 Several times faster
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