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Background

2This talk is based on the paper 2305.04099

https://arxiv.org/abs/2305.04099


Background
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L1 trigger at the LHC reduces extreme data rates of O(10) TB/s to a manageable level

• It discards events forever! So we need very precise selection to keep interesting physics events

Ø ML algorithms which can improve sensitivity to rare/new physics

• Strict computing resource constraints and ultra low-latency < O(1) 𝜇s

Ø Algorithms need to be extremely lightweight

Ø Need to run on custom hardware such as FPGAs to achieve nanosecond inference

But always a performance-resource trade-off!



Background
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Ongoing ML developments at the L1 trigger for LHC Run3 include the anomaly triggers

• Anomaly detection as an unsupervised learning that targets all “rare” events at once

• Search interesting physics events at the trigger level in a model-agnostic way

Ø Challenges: NN-based models can hardly fit to resource/latency constraints without largely compromising accuracy

“Rare” physics
(Higgs, BSM, etc.)

“Background” physics
(QCD, etc.)



Symbolic Regression (SR): a ML technique that seeks to discover analytic 
functions that approximate a dataset

Dataset →
input

Big black box

→ Output 𝑓 𝑥 = 𝑥!" − sin 𝑥#𝑥" + 𝑥$log 5 + 𝑥% +⋯Dataset →
input

→ Output

One-line closed form solution

NN SR
vs.

Symbolic regression
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Offer interpretable results for the underlying problem
• E.g., rediscovering Newton’s law of gravitation from observables 2202.02306

Unlike deep learning models, SR easily generates a set of models on the Pareto front, which allows for 
optimizing the performance-resource tradeoff directly

Potential to be highly efficient for resource-constrained production environments
• For low-dim problems: use SR as master model
• For high-dim problems: intermediate compression (e.g., distill a big NN)

https://arxiv.org/abs/2202.02306


High-performance symbolic regression in Python: PySR

Open-source and user-friendly

Based on genetic programming

• Create expression trees

• Trees grow and fittest ones can evolve to next generation

• Mutation and crossbreeding can happen to explore more expressions

Simple and flexible configuration for different use case

• Custom operators, loss, complexity definition, etc.
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high level synthesis for machine learning

hls4ml: a user-friendly open-source Python package for fast ML inference in FPGAs
Ø Input trained models from standard libraries such as (Q)Keras, PyTorch,… and PySR
Ø Provide an efficient and fast translation to HLS code
Ø User can control model aspects for optimal performance on FPGAs
v Necessary for extreme environments such as LHC L1 trigger where resources are strictly constrained and a max 

latency of O(1) 𝜇s is imposed

7https://fastmachinelearning.org/hls4ml/

now PySR!

https://fastmachinelearning.org/hls4ml/


A physics benchmark: HLS4ML LHC Jet dataset publicly available at Zenodo, generated for FastML/HLS4ML studies

• Dataset of boosted jets from simulations of LHC proton-proton collisions (~1M simulated jets)

• Each jet represented by 16 high-level physics-motivated features

• Multiclass classification → {gluon, light-quark, W, Z, top}

Dataset: LHC jet tagging
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Description of each of the 16 input variables at 1709.08705

https://doi.org/10.5281/zenodo.3602260
https://arxiv.org/abs/1709.08705


Baseline model

• Standard baseline architecture for FastML studies chosen to yield reasonable performance while being 
lightweight (sub-100 ns latency)

• Trained quantization aware with QKeras 2006.10159
• Convert to HLS firmware with hls4ml
• Serve as baseline for accuracy and FPGA resource utilization to be compared with SR
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e.g.,quantized ReLu

Model parameters in fixed numerical precision 
and constrained during weight optimization

https://arxiv.org/abs/2006.10159


Plain SR implementation
• Models with single class of math functions

• Polynomial: +, -, x
• Trigonometric: +, -, x, sin(⋅)
• Exponential: +, -, x, Gauss(⋅)=exp(-(⋅)2)
• Logarithmic: +, -, x, log(abs(⋅))

• Model size can be quantified by a measure called complexity
Ø Default complexity for every operator = 1
Ø All operators are equally penalized
Ø Search is configured to find expressions having a complexity up to a max value 𝑐max

• Reduce input dimensions by random forest regressor (PySR built-in functionality). We select 6 out of 16 here
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Math function approximation with lookup table
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• Use an array that maps input to 
output, thus runtime computation 
is replaced by array indexing 
operation

• Custom table range and size
• No DSPs allocated if both are 

2&

• Every LUT operation requires only 1 
clock cycle



Benchmark
To compare
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Baseline (QAT NN) SR (5-line expressions)

On
§ Classification accuracy
§ FPGA resource utilization

o DSPs
o LUTs
o Inference latency

vs.



Accuracy

• Trigonometric equations, and others, perform very close to NN

• Models with single math class at relatively low complexity can give 

comparable accuracy

• Sensitive to function choice, e.g. trigonometric vs. polynomial

• Approximation with lookup tables does not downgrade 

performance

13

TrigonometricPolynomial



Resource utilization
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Polynomial

SR models dramatically reduce latency and resources compared to NN

• Several orders of magnitude improvement in resource usage

• Several times faster

II=1



Resource utilization
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Logarithmic II=1

5 ns!
SR models dramatically reduce latency and resources compared to NN

• Several orders of magnitude improvement in resource usage

• Several times faster



Latency-aware training

• By default, PySR assigns every operator complexity 

to 1, this means all operators are equally penalized 

when being added

• Not optimal for FPGA deployment since there is 

difference in number of clock cycles (cc) required

• We can re-define operator complexity to the 

corresponding no. of cc

• One can also specify a latency budget

• Note that function approximation with lookup tables 

is not relevant here since every array indexing 

operation needs 1 cc only 
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Operator No. of cc

+ 1

− 1

× 1

log(abs(⋅)) 4

sin(⋅) 8

tan(⋅) 48

cosh(⋅) 8

sinh(⋅) 9

exp(⋅) 3

Evaluated with <16,6> on a Xilinx VU9P FPGA
(xccu9p-flga2577-2-e)



Latency-aware training

17Accuracy Resources and latency
II=1



Summary

• We presented a novel approach of SR utilization in the context of FPGAs
ü Integrated SR into hls4ml
ü Proposed 3 implementation strategies
ü Demonstrated SR can achieve comparable accuracy while using significantly less resources (by 

orders of magnitude) and inferring faster (by few multiples), as compared to NN-based model

• Future works (naming only a few)
q NN-based SR to enable quantization-aware training: start from a (sparse) NN with math 

operations as activations, trained with QKeras, then prune to yield final expressions
q Use SR as distillation

§ Distill intermediate layers of big models
§ Regress outputs directly

q Investigate SR in problems with high input dimensions
§ Feature engineering
§ Break it into lower dimensions, feed to a hierarchy of localized NNs, then do SR
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Backup
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Accuracy
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Exponential Logarithmic



Resource utilization

21

Trigonometric

SR models dramatically reduce latency and resources compared to NN

• Several orders of magnitude improvement in resource usage

• Several times faster

II=1



Resource utilization
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Exponential II=1

5 ns!SR models dramatically reduce latency and resources compared to NN

• Several orders of magnitude improvement in resource usage

• Several times faster


