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• Deterministic transformation functions

Input(s) Output(s)

Uncertainty Types: Aleatoric vs Epistemic uncertainties
• Aleatoric à Data uncertainties

• Epistemic à Model or Out of training distribution uncertainty (OOD)

Aleatoric

Epistemic

Uncertainty Quantification in Machine Learning

• Decision making based on predictions from ML models
• Uncertainty Quantification is required to make an informed decision

OOD

Gaussian Process (GP) provide 
robust uncertainty quantification
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Outline

Ø Traditional application of Gaussian Process (GP):

Ø Uncertainty aware experiment control at GlueX with GP

Ø Scaling limitations of GP and UQ for Deep Neural Networks (DNN):

Ø Uncertainty aware anomaly prediction at SNS

Ø Uncertainty aware particle identification for SoLID

Ø Uncertainty aware surrogate model for FNAL booster

Ø Conclusion
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Gaussian Process (GP) for Calibration of the Central Drift Chamber (CDC)

● Requires two calibrations: gain and drift time-to-distance
○ Gain Correction Factor (GCF) [variation +/- 15%]

● Has one control: operating voltage
● CDC is gas filled, sensitive to 

● Atmospheric pressure
● Temperature

● Experimental conditions change, i.e. beam current
● model uses high voltage board current as a proxy for beam current

Conventional

Calibrate: calibration values 
iteratively produced after the 
experiment

No Control: CDC operating 
voltage is fixed at 2125 V

Motivation: Online calibration to save time and 
computing resources required for post calibration

Online and ML

Online. calibration and Control: 
Stabilize detector response to 
changing 
environmental/experimental 
conditions by adjusting CDC HV
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Experimental Control Requires Uncertainty Quantification
• Training data rarely has complete coverage: 601 runs, 2 run periods
• Do experts trust model predictions?

Cosmic Ray Experiment
• Sorted the CDC into 2 halves

• Leave one side at a fixed HV (conventional)

• Let the ML control the other

• Autonomously adjust HV every 5 min

Conventional in orange
ML-tuned in blue

Uncertainty Surface Mesh:
• Threshold of standard 

deviation, visualize feature 
space

• Uncertainty > threshold

Approach-1: use prediction 
for the closest point on the 
surface

Approach-2: return CDC to 
traditional high voltage 
setting, 2125 V and  collect 
more data to train

GP for Calibration of the Central Drift Chamber (CDC)
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Large data sets with higher dimensions and GP

• GP provides robust UQ but scales poorly with increase in data samples (O(!"))

• For large datasets and/or in large feature space, GP approximation is required

• Deep Neural Networks (DNN)  are very expressive and scales with size of dataset

• DNN can deal with different types of data including images, text, and timeseries

• What about UQ for DNN?
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(a) MC Dropout (b) Ensemble

Q1

(c) Quantile Regression

Q2

Q3

Qn

https://arxiv.org/abs/2107.07511

(d) Conformal Predictions

Spectral Neural Gaussian Process
!

GP takes into 
account distance 
between input 
samples explicitly

• Distance preservation via Spectral Norm on  
each hidden layer

• Reduced expressivity, harder to learn

• Distance preservation via bi-lipschitz

"# and "$ are hyper-parameters, ℎ&', ℎ&( are 
hidden layer outputs corresponding to inputs 
)#, )$ respectively

UQ in Deep Learning
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Anomaly Prediction at SNS Accelerator
• Accelerators are complex multi-system machine

• Failure in any equipment can cause errant beams

• Fault prediction is beneficial in many ways including reduced
downtime

Dataset:

• We used the macro-pulse before an errant beam pulse (and labeled it as 
anomaly) and macro-pulses from the normal operation (and labeled them as 
normal) for our studies

• Our hypothesis: there is a sign about upcoming anomaly in macro-pulses even 
before it happens

• We also need to forecast the fault within a short time window to be actionable

Goal: To predict errant beam pulses (with uncertainty quantification) 
before they occur to avoid potential damage to the equipment(s) and 
reduce the downtime
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Uncertainty Aware Siamese Model and Results
• We use Siamese Model to predict similarities with normal reference waveforms

• Attached GP approximation layer at the end to provide UQ

• The ROC curves bands are produced by smearing the predictions with uncertainty

• To evaluate the OOD uncertainty robustness

• Introduced a different anomaly type (not included in training)

• The model predicts OOD anomaly reasonably well with higher uncertainty

Maximize TPR 
at FPR < 0.5%
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Uncertainty Aware PID for SoLID

Cherenkov Readout:
each 5cmx5cm MAPMT can have

• 1 pmt sum output with Number of photoelectrons (Npe)

• 4 2.5cm x 2.5cm quad sum output with Npe

• 64 6mm x 6mm pixels with 0/1

• Cost increase with more readout channels and increasing resolution

Goal: Use ML to understand what 
level of readout is needed to achieve 
desired performance

Dataset:

• Readout hits on the sensors from PMT having the lowest to Pixel readout having the
highest resolution

Pixel Quad PMT
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Uncertainty Aware PID for SoLID

• Pion vs Kaon

• The PID data is converted to images

• The deep learning model is designed using conv2D layers to 
learn the patterns

• GP approximation layer to provide UQ

• Simulation data is used with higher background noise to mimic 
the realistic scenario

Section PMT Quad Pixel Npe cut

P 2.5 GeV theta 8.0 degree 
(most difficult for pion acceptance)

0.978 0.991 0.994 0.5

P 7.5 GeV theta 14.0 degree 
(most difficult for kaon rejection)

0.991 0.995 0.997 0.6

True prediction rate at False Positive rate of 5%
• DNN based PID model has shown much 

better performance than traditional cuts

• Next Step: Evaluate the UQ robustness by 
introducing third/ noise particle
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Uncertainty Aware Surrogate Model for FNAL Booster
Fermilab Site

Booster ring

Courtesy: Christian Herwig

The Booster accelerates 400 MeV 
beam to 8GeV with the help of 
booster cavities and Combined-
function bending and focusing 
electromagnets known as gradient 
magnets.

These magnets are powered by the 
gradient magnet power supply 
(GMPS)

Fluctuations in GMPS electrical 
current due to neighboring electrical 
loads and thus fluctuations of the 
magnetic field in the Booster 
gradient magnets

A GMPS regulator is required to 
stabilize the accelerating magnetic 
field

Problem definition:
Develop a surrogate model of the GMPS that can be leveraged to train a 
modern control system such as reinforcement learning agent to stabilize 
the GMPS power supply
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Uncertainty Aware Surrogate Model for FNAL Booster
• Surrogate model is developed using ResNet Conv1D blocks followed by 

fully connected layers

• UQ is important to know which areas are not well modeled by the 
surrogate model

• We evaluated three different methods of UQ for DNN regression

• DQR provide robust UQ in-distribution but not on OOD

• BNN method does a better job at estimating OOD uncertainty

• GP approximation model provide the best OOD estimation and is 
calibrated by design

In distribution data
https://arxiv.org/pdf/2109.10254.pdf

The high frequency with higher 
fluctuation in amplitude are removed 
from training to make it OOD

One of the input variable is 
monotonically increased manually 
to make it go OOD
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Conclusion
• GP provides robust uncertainty quantifications for both in-distribution and OOD samples

• Presented application of GP to autonomously calibrate CDC in GlueX detector

• With larger datasets and higher dimension, GP does not scale; approximation required

• DNN can handle large multi-model datasets with ease

• GP can be attached to DNN models to provide UQ

• Distance between input samples need to be preserved through hidden layers

• Presented uncertainty aware anomaly prediction for SNS accelerator with GP approximation

• Presented comparison of PID in SoLID with different readout resolutions

• Presented uncertainty aware surrogate model for FNAL booster
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