Applications of Lipschitz neural networks to the Run 3 LHCb trigger

26th International Conference on Computing in High Energy & Nuclear Physics Norfolk, $VA \cdot May 11^{th}$, 2023

<u>Blaise Delaney</u>, on behalf of the LHCb Collaboration

The LHCb detector in Run 3 @ the LHC

Blaise Delaney (MIT) on behalf of LHCb

- Forward-arm spectrometer instrumented for the study of *b* and *c* hadrons
- **Run 3**: unprecedented conditions:
 - instantaneous $\mathcal{L} = 2 \times 10^{33} \mathrm{cm}^{-2} \mathrm{s}^{-1}$ \rightarrow 5 × Run 2
 - redesigned tracking & electronics @ pp bunch crossing rate of 30 MHz
 - *milestone:* fully software trigger

See talks by {LHCb colleagues}

×

LHCb raw data 15000 PB/year

*image not to scale

Blaise Delaney (MIT) on behalf of LHCb

\Rightarrow LHCb trigger: *real-time* data reduction: 5 TB/s \rightarrow 10 GB/s

See talks by {LHCb colleagues}

Blaise Delaney (MIT)

4

No margin for error in the trigger system demands effective discriminators capable of

Blaise Delaney (MIT) on behalf of LHCb

NeurIPS ML4PS 21 arXiv:2112.00038

No margin for error in the trigger system demands *effective* discriminators capable of

- robustness, i.e. mitigated sensitivity to a) experimental instabilities during data taking b) deficiencies in simulation

Blaise Delaney (MIT) on behalf of LHCb

NeurIPS ML4PS 21 arXiv:2112.00038

 \Rightarrow constrain the Lipschitz constant, λ , of the model $g(x) : |g(x) - g(y)| \le \lambda ||x - y||_1, \forall x, y \in \mathbb{R}^n$

No margin for error in the trigger system demands effective discriminators capable of

robustness, i.e. mitigated sensitivity to a) experimental instabilities during data taking b) deficiencies in simulation

 \Rightarrow NN architecture monotonic wrt a (sub)set of input features

Blaise Delaney (MIT) on behalf of LHCb

NeurIPS ML4PS 21 arXiv:2112.00038

 \Rightarrow constrain the Lipschitz constant, λ , of the model $g(x) : |g(x) - g(y)| \le \lambda ||x - y||_1, \forall x, y \in \mathbb{R}^n$

interpretability: built in inductive bias "the higher the momentum & longer the lifetime, the better"

No margin for error in the trigger system demands effective discriminators capable of

- ▶ robustness, i.e
 - a) experimenta

 - \Rightarrow constrain th
- interpretabili

 \Rightarrow NN architecture monotonic wrt a (sub)set of input features

Blaise Delaney (MIT) on behalf of LHCb

NeurIPS ML4PS 21 arXiv:2112.00038

b) deficiencies : Expressive shallow architectures meeting memory $oldsymbol{y}||_1, orall oldsymbol{x}, oldsymbol{y} \in \mathbb{R}^n$ and compute requirements of the LHCb trigger time, the better"

Monotonic Lipschitz Neural Networks Exempli gratia: simplified HLT1 inclusive heavy-flavor trigger NeurIPS ML4PS 21 arXiv:2112.00038

Monotonic Lipschitz Neural Networks Exempli gratia: simplified HLT1 inclusive heavy-flavor trigger NeurIPS ML4PS 21 arXiv:2112.00038

Blaise Delaney (MIT) on behalf of LHCb

1(

Monotonic Lipschitz Neural Networks Exempli gratia: simplified HLT1 inclusive heavy-flavor trigger NeurIPS ML4PS 21 arXiv:2112.00038

The LHCb Topological Triggers Beauty and charn

Higher-level (HLT2) trigger for *inclusive* selection of B decays

 \Rightarrow select multi-body candidates with *b*-hadron decay topologies:

- B mass $\mathcal{O}(5 \text{ GeV}) \rightarrow \text{high transverse momentum, } p_T$
- Lifetime of $\mathcal{O}(1 \text{ ps}) \rightarrow \text{displaced decay vertex}$
- Boosted in forward direction $\rightarrow O(1 \text{ cm})$ before decay \bullet vertex (DV)

Blaise Delaney (MIT) on behalf of LHCb

Beau

р

р

Beauty decay topology Credit: Vom Bruch, Vistas on Detector Physics, Heidelberg

> \blacktriangleright B^{\pm} mass \sim 5.2 $p_T O(1 \text{ GeV})$ $\sim 1.6 \text{ ns}$ Flid

Run 3: Monotonic Lipschitz NN \Rightarrow identify 2- and 3-body b-candidates using

- ► Kinematics
- Decay topology

Increasing monotonic wrt

- a) candidate p_T
- b) candidate flight distance
- c) χ^2 of the impact parameter (IP)

Blaise Delaney (MIT) on behalf of LHCb

Sensitivity to:

- Beauty candidates
- Potential feebly interacting BSM

N. Schulte, J. Albrecht, BD, N. Nolte, M. Williams @ ACAT 2022

Unconstrained NN

Blaise Delaney (MIT) on behalf of LHCb

Lipschitz monotonic NN

14

Summary & Outlook

- Extensive application of Lipschitz monotonic NNs in the Run 3 LHCb trigger: Select inclusively heavy-flavor decays
 - Enhanced sensitivity to long-lived feebly interacting BSM particles
 - Planned applications to tracking, electron ID & ghost rejection

Beyond LHCb:

Applications to medicine, criminal justice [ICLR 23] & collider phenomenology [arXiv:2209.15624v1]

Appendix

- <u>Goal</u>: NN representing $f(x) : \mathbb{R}^n \to \mathbb{R}$ monotonic wrt feature (sub)set and with bound gradient wrt inputs in any direction
- Lip¹ model $g(\boldsymbol{x})$: $|g(\boldsymbol{x}) g(\boldsymbol{y})| \le \lambda ||\boldsymbol{x} \boldsymbol{y}||_1, \ \forall \ \boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$
- Monotonicity wrt to features x_i via residual connection $f(x) = g(x) + \lambda \sum x_i$ \Rightarrow monotonicity defined via partial derivative

$$\frac{\partial f}{\partial x_i} = \frac{\partial g}{\partial x_i}$$

while keeping $x \neq i$ constant

Blaise Delaney (MIT) on behalf of LHCb

NeurIPS ML4PS 21 arXiv:2112.00038

 $\frac{\lambda}{i_i} + \lambda \ge 0, \ \forall \ i \in I$

17

- Goal: g(x) a universal approximator of Lip¹ functions
- Given the fully connected NN

$$g(\boldsymbol{x}) = W^m \sigma(W^{m-1} \sigma(\dots$$

robustness (aka bounded λ) achieved if

 $\prod_{i=0}^{m}$

and σ has Lipschitz constant less than or equal to 1

Blaise Delaney (MIT) on behalf of LHCb

NeurIPS ML4PS 21 arXiv:2112.00038

 $.\sigma(W^1 x + b^1)...) + b^{m-1}) + b^m,$

 $\|W^i\|_1 \le \lambda$

- Goal: g(x) a universal approximator of Lip¹ functions
- Given the fully connected NN

$$g(\mathbf{x}) = W^m \sigma(W^{m-1} \sigma(...\sigma(W^1 \mathbf{x} + b^1)...) + b^{m-1}) + b^m,$$

robustness (aka bounded λ) achieved if

and σ has Lipschitz constant less than or equal to 1

Blaise Delaney (MIT) on behalf of LHCb

NeurIPS ML4PS 21 arXiv:2112.00038

 $\sigma = \mathbf{GroupSort}$

Anil, Cem, James Lucas, and Roger Grosse. "Sorting out Lipschitz function approximation." *International Conference on Machine Learning*. PMLR, 2019.

N. Schulte, J. Albrecht, BD, N. Nolte, M. Williams @ ACAT 2022

N. Schulte, J. Albrecht, BD, N. Nolte, M. Williams @ ACAT 2022

TwoBody Features

min ($p_{\mathrm{T, FS}}$ particles (1,2), sum $p_{\mathrm{T, FS particles (1,2)}}$ $p_{\mathrm{T}, \mathrm{B-Hadron}}$ $\log\left(\min(\chi^2_{\rm IP, \ FS \ particles \ (1,2)})\right)$ $\log\left(\max(\chi^2_{\rm IP, \ FS \ particles \ (1,2)})\right)$ $\log\left(\chi^2_{\rm FD, \ B-Hadron}\right)$ $\log\left(\chi^2_{\text{Vertex, B-Hadron}}\right)$ DOCA (B-Hadron)

ThreeBody Features min ($p_{\mathrm{T, FS}}$ particles (1,2,3) sum ($p_{\mathrm{T, FS}}$ particles (1,2,3) $p_{\mathrm{T, B-Hadron}}$ $\log \left(\min(\chi^2_{\text{IP, FS particles (1,2,3)}) \right)$ $\log\left(\max(\chi^2_{\rm IP, \ FS \ particles \ (1,2,3)})\right)$ $\log\left(\chi^2_{\rm FD, \ B-Hadron}\right)$ $\log\left(\chi^2_{\text{Vertex, B-Hadron}}\right)$ DOCA (B-Hadron) $\min(p_{\mathrm{T, FS particles (1,2)}})$ sum $(p_{T, FS \text{ particles } (1,2)})$ DOCA (TwoBody) $\log\left(\chi^2_{\rm FD, TwoBody}\right)$ $\log\left(\chi^2_{\text{Vertex, TwoBody}}\right)$ $\log\left(\chi^2_{\rm IP, \ TwoBody}\right)$ $p_{\mathrm{T, TwoBody}}$

N. Schulte, J. Albrecht, BD, N. Nolte, M. Williams @ ACAT 2022

Training Samples $\Lambda_b^0 \to (\Lambda_c(2625)^+ \to (\Lambda_c^+ \to p^+ K^- \pi^+)\pi^+ \pi^-)\mu^- \overline{\nu}_\mu$ $B^+ \to \mu^+ \mu^- \mu^+ \nu_\mu$ $B + \to (\overline{D}^0 \to K^+ \pi^-) (K_S^0 \to \pi^+ \pi^-) \pi^+$ $\Lambda_b^0 \to p^+ \mu^- \overline{\nu}_\mu$ $B^0 \to (D^0 \to K^- \pi^+ \pi^+ \pi^-) (\overline{D}^0 \to K^+ \pi^-)$ $B^+ \rightarrow K^+ \mu^+ \mu^- \mu^+ \mu^- \mu^+ \mu^ B^+ \to (\overline{D}^0 \to K^+ \pi^-) \pi^+ \pi^- \pi^+$ $B_c^+ \rightarrow (J/\psi(1S) \rightarrow \mu^+\mu^-)\mu^+\nu_\mu$ $B_s^0 \rightarrow (D_s \longrightarrow K^+ K^- \pi^-) \nu_\mu \mu^+$ $B^0_s \to K^- \nu_\mu \mu^+$ $B^+ \to (D^{\star +}(2010) \to (D^0 \to K^- \pi^+)\pi^+)(\overline{D}^0 \to K^+ \pi^-)$ $B^0_s \to K^-(\tau^+ \to \mu^+ \nu_\mu \overline{\nu}_\tau) \nu_\tau$ $B^0 \to (D^{\star -} \to \pi^- (\overline{D}^0 \to K^+ \pi^-))(\tau^+ \to \pi^+ \pi^- \overline{\nu}_\tau)\nu_\tau$ $B^+ \to \pi^+ \pi^- K^+$ $B_c^+ \to (J/\psi(1S) \to \mu^+\mu^-)(\tau^+ \to \mu^+\nu_\mu\overline{\nu}_\tau)\nu_\tau$ $B^0 \to (K^{\star 0}(892) \to K^+\pi^-)\gamma$ $B^- \to p^+ \overline{p}^- (\tau^- \to \mu^- \overline{\nu}_\mu \nu_\tau) \overline{\nu}_\tau$ $B^- \to (D^0 \to K^- \pi^+) (\tau^- \to \mu^- \nu_\tau \overline{\nu}_\mu) \overline{\nu}_\tau$ $B^+ \to (\overline{D}^{\star 0} \to \pi^0((\overline{D}^0 \to K^+\pi^-))(\tau^+ \to \pi^+\pi^-\pi^+\overline{\nu}_{\tau})\nu_{\tau}$ $B^- \to p^+ \overline{p}^- \mu^- \overline{\nu}_\mu$

