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The LHCb detector

Increase granularity of tracking stations and reduce material budget:

- VELO: silicon-pixel technology.

- UT: silicon-strip.

- SciFi: scintillating fibers.
Adapt electronics and readout system
to 40 MHz, replace HPDs in the RICH
detectors and reduce the PMT gain in

the calorimeters.

Many improvements in software: new event
model, SoA, functional approach, multi-
threading, ...

Still, need to apply a selection per track (pT ) in
order to limit the number of tracks.

CERN-LHCC-2018-014, LHCB-TDR-018
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See talks by {LHCb colleagues} 

‣ Forward-arm spectrometer instrumented for 
the study of b and c hadrons


‣  Run 3: unprecedented conditions:


• instantaneous                                                
  Run 2 


• redesigned tracking & electronics @ pp 
bunch crossing rate of 


• milestone: fully software trigger     


→ 5 ×

30 MHz
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The Run 3 LHCb trigger system

LHCb raw data

15000 PB/year

LHCb storage capacity

30 PB/year

500  reduction×
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 LHCb trigger: real-time data reduction: 5 TB/s  10 GB/s⇒ →
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Figure 1: LHCb upgrade dataflow focusing on the real-time aspects.
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Figure 2: LHCb upgrade dataflow focusing on the real-time aspects, in widescreen view.
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references for use in papers.

3

Fully software, two-staged trigger:  select only interesting events

 combination of expert systems and machine learning  ⇒

LHCb-FIGURE-2020-016


See talks by {LHCb colleagues} 



Monotonic Lipschitz Neural Networks

Blaise Delaney (MIT) on behalf of LHCb 5

<latexit sha1_base64="ILPLd2P1Nut5e+NDG0mOgYR/OXo=">AAAClHicbVFNT+MwEHUCLNDlo4DEhctoq5VAgipBCBDiUEBIe1p1EQWkplSO47YWjhNsB1El4Q/xb7jxb3DaHki7I9l+evOeZjzjx5wp7Tiflj03v/BjcWm58nNldW29urF5p6JEEtoiEY/kg48V5UzQlmaa04dYUhz6nN77T1dF/v6FSsUicauHMe2EuC9YjxGsDdWtvvd3PT/igRqG5klf870zyGY4OIAyN8z3MvA4fTaXKRZgyLKyx1jKhizrpm6+D14vkpjzNyjr96fk4DEBXoj1wPfTm/wxFXm3WnPqzihgFrgTUEOTaHarH14QkSSkQhOOlWq7Tqw7KZaaEU7zipcoGmPyhPu0baDAIVWddDTUHH4bJgDTrDlCw4j97khxqIpujbLoUk3nCvJ/uXaie6edlIk40VSQcaFewkFHUGwIAiYp0XxoACaSmV6BDLDERJs9VswQ3Okvz4K7w7p7XD/6d1RrXE7GsYR20C+0i1x0ghroD2qiFiLWhnViNawLe9s+t6/s67HUtiaeLVQK++8XEM3MZw==</latexit>

g(x) : |g(x)� g(y)|  �||x� y||1, 8 x,y 2 Rn

NeurIPS ML4PS 21 
 arXiv:2112.00038

No margin for error in the trigger system demands effective discriminators capable of


‣ robustness, i.e. mitigated sensitivity to 

a) experimental instabilities during data taking

b) deficiencies in simulation


 constrain the Lipschitz constant,  , of the model


‣ interpretability: built in inductive bias “the higher the momentum & longer the lifetime, the better” 

 NN architecture monotonic wrt a (sub)set of input features


⇒
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Figure 4: Simplified version of the LHCb inclusive heavy-flavor trigger problem using only 2 inputs,
which permits displaying the response everywhere in the feature space; shown here as a heat map with
more signal-like (background-like) regions colored blue (red). The dark solid line shows the decision
boundary predicted to give the required output bandwidth in Run 3.

Figure 5: E�ciency of each model shown in Fig. 4 at the expected Run 3 working point versus the
proper lifetime of the decaying heavy-flavor particle selected. The monotonic models produce a nearly
uniform e�ciency above a few ps at the expense of a few percent lifetime-integrated e�ciency. Such
a trade o↵ is desirable as explained in the text.

undesirable because in many cases studying the longest-lived heavy-flavor particles is of more interest
than simply collecting the largest decay sample integrated over lifetime (see, e.g., [12]). Furthermore,
many proposed explanations of dark matter and other types of new physics predict the existence of
new particles with similar properties to heavy-flavor particles, but with longer lifetimes [13, 14]. This
classifier would reject these particles because it is unaware of our inductive bias that highly displaced
DVs are worth selecting in the trigger and studying in more detail later.

Since the LHCb community is generally interested in studying highly displaced DVs for many
physics reasons, we want to ensure that a larger displacement corresponds to a more signal-like re-
sponse. The same goes for DVs with higher

P
pT. Enforcing a monotonic response in both features

is thus a desirable property, especially because it also ensures the desired behaviour for data points
that are outside the boundaries of the training data. Multiple methods to enforce monotonic behavior
in BDTs already exist [15], and Figs. 4 (middle) and 5 (middle) show that this approach works here.

– 9 –

NeurIPS ML4PS 21 arXiv:2112.00038
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Beauty and charm decays

● B±/0 mass ~5.3 GeV
5 Daughter pT O(1 GeV)

●  ~1.6 ps 5 flight distance ~1cmτ

● Detached muons from B5J/ X, J/  5 Ψ Ψ μ+μ-

● Displaced tracks with high pT

● D±/0 mass ~1.9 GeV
5 Daughter pT O(700 MeV)

● τ ~0.4 ps 5 flight distance ~4mm
● Also produced from B decays

PV: Primary vertex
SV: Secondary vertex
IP: Impact parameter: distance between point of closest       
      approach of a track and a PV

The LHCb Topological Triggers

‣ Higher-level (HLT2) trigger for inclusive selection of B 
decays


 select multi-body candidates with b-hadron decay 
topologies:


• B mass   high transverse momentum, 


• Lifetime of   displaced decay vertex 


• Boosted in forward direction   before decay 
vertex (DV)

⇒

𝒪(5 GeV) → pT

𝒪(1 ps) →

→ 𝒪(1 cm)

Blaise Delaney (MIT) on behalf of LHCb 12

Beauty decay topology

Credit: Vom Bruch, Vistas on Detector Physics, Heidelberg



Run 3: Monotonic Lipschitz NN  identify 2- and 3-body  b-candidates using 


‣Kinematics 


‣Decay topology


‣ Increasing monotonic wrt 

a) candidate 

b) candidate flight distance

c)   of the impact parameter (IP)  

 


⇒

pT
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The HLT2 Topological Triggers in Run 3

Blaise Delaney (MIT) on behalf of LHCb 13

Sensitivity to:

‣ Beauty candidates

‣ Potential feebly interacting BSM 



The HLT2 Topological Triggers in Run 3
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Summary & Outlook

Blaise Delaney (MIT) on behalf of LHCb

Extensive application of Lipschitz monotonic NNs in the Run 3 LHCb trigger:


‣ Select inclusively heavy-flavor decays


‣ Enhanced sensitivity to long-lived feebly interacting BSM particles 


‣ Planned applications to tracking, electron ID & ghost rejection


Beyond LHCb: 


‣ Applications to medicine, criminal justice [ICLR 23] & collider phenomenology 
[arXiv:2209.15624v1]
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Monotonic Lipschitz Neural Networks

‣ Goal: NN representing   monotonic wrt feature (sub)set and with bound gradient wrt inputs 
in any direction


‣ Lip1 model 


‣ Monotonicity wrt to features  via residual connection


  monotonicity defined via partial derivative


while keeping  constant
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Monotonic Lipschitz Neural Networks

‣ Goal:  a universal approximator of Lip1 functions


‣ Given the fully connected NN 


robustness (aka bounded ) achieved if 


and  has Lipschitz constant less than or equal to 1
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x 6=i constant. It is therefore advisable to look out for ill defined edge cases. For instance, let x2 ⌘ �x1

in the training data and define I = {1, 2}. This is incompatible with the architecture and produces
unwanted results unless � = 0 for both x1 and x2 (otherwise the problem is ill posed).

To the best of our knowledge, the only use of residual connections in the literature when trying
to learn monotonic functions is in the context of invertible ResNets [6]. Instead, the state-of-the-art
approach for learning monotonic functions involves penalizing negative gradients in the loss, then
certifying the final model is monotonic, rather than enforcing it in the architecture (e.g. in [3]).

2.2 Enforcing Lipschitz Constraints

Ideally, the construction g(x) should be a universal approximator of Lip1 functions. Here, we discuss
possible architectures for this task.

Lip
1
constrained models Fully connected networks can be Lipschitz bounded by constraining the

matrix norm of all weights [7, 8]. Given the fully connected network with activation �

g(x) = W
m
�(Wm�1

�(...�(W 1x+ b
1)...) + b

m�1) + b
m
, (2.5)

where W
m is the weight matrix of layer m, g(x) satisfies Eq. (2.2) if

mY

i=0

kW
i
k1  � (2.6)

and � has a Lipschitz constant less than or equal to 1. There are multiple ways to enforce Eq. (2.6).
Two possibilities that involve scaling by the operator norm of the weight matrix [7] are

W
i
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i

max(1, kW ik1)
or W

i
! W

0i =
W

i

max(1,��1/m · kW ik1)
. (2.7)

In our studies thus far, the latter variant seems to train slightly better. However, in some cases it
might be useful to use the former to avoid the scale imbalance between the neural network’s output
and the residual connection used to induce monotonicity.

In order to satisfy Eq. (2.6), it is not necessary to divide the entire matrix by its 1-norm. It is
su�cient to ensure that the absolute sum over each column is constrained:

W
i
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0i = W
idiag

0

@ 1
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P
j |W

i
jk|

⌘

1

A . (2.8)

This novel normalization scheme tends to give even better training results in practice. While Eq. (2.8)
is not suitable as a general-purpose scheme, e.g. it would not work in convolutional networks, its
performance in training in our analysis motivates further study of this approach in future work.

The constraints in Eqs. (2.7) and (2.8) can be applied in di↵erent ways. For example, one could
normalize the weights directly before each call such that the induced gradients are propagated through
the network like in [8]. While one could come up with toy examples for which propagating the gradients
in this way hurts training, it appears that this approach is what usually is implemented for spectral
norm [8] in PyTorch and TensorFlow. Alternatively, the constraint could be applied by projecting
any infeasible parameter values back into the set of feasible matrices after each gradient update as in
Algorithm 2 of [7]. Algorithm 1 summarizes our approach.
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This novel normalization scheme tends to give even better training results in practice. While Eq. (2.8)
is not suitable as a general-purpose scheme, e.g. it would not work in convolutional networks, its
performance in training in our analysis motivates further study of this approach in future work.
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in this way hurts training, it appears that this approach is what usually is implemented for spectral
norm [8] in PyTorch and TensorFlow. Alternatively, the constraint could be applied by projecting
any infeasible parameter values back into the set of feasible matrices after each gradient update as in
Algorithm 2 of [7]. Algorithm 1 summarizes our approach.
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2.2 Enforcing Lipschitz Constraints

Ideally, the construction g(x) should be a universal approximator of Lip1 functions. Here, we discuss
possible architectures for this task.
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and the residual connection used to induce monotonicity.
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This novel normalization scheme tends to give even better training results in practice. While Eq. (2.8)
is not suitable as a general-purpose scheme, e.g. it would not work in convolutional networks, its
performance in training in our analysis motivates further study of this approach in future work.

The constraints in Eqs. (2.7) and (2.8) can be applied in di↵erent ways. For example, one could
normalize the weights directly before each call such that the induced gradients are propagated through
the network like in [8]. While one could come up with toy examples for which propagating the gradients
in this way hurts training, it appears that this approach is what usually is implemented for spectral
norm [8] in PyTorch and TensorFlow. Alternatively, the constraint could be applied by projecting
any infeasible parameter values back into the set of feasible matrices after each gradient update as in
Algorithm 2 of [7]. Algorithm 1 summarizes our approach.
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Algorithm 1 Training with enforced Lipschitz constraint using weight-norming

Require: {Di}
n
i=1

, a collection of n training batches.
Require: w, the non-normalized weight parameter at some layer. . These are the optimized leaf
parameters

Require: Norm, the function used to normalize the weights, e.g. as given by Eq. (2.8).
Require: Cost, the loss computed using a neural network with weight parameters ŵ on a given batch.

ŵ  Norm(w) . This is the weight used in the neural network matrix multiplication
while not converged do

for i from 1 to n do

L Cost(Di, ŵ)
w  w �rwŵ ·rŵL

ŵ  Norm(w)
end for

end while . At inference time, only ŵ is used.

Preserving expressive power Some Lipschitz network architectures (e.g. [8]) tend to overcon-
strain the model in the sense that these architectures cannot fit all functions �-Lip1 due to gradient
attenuation. For many problems this is a rather theoretical issue. However, it becomes a practical
problem for the monotonic architecture since it often works on the edges of its constraints, for instance
when partial derivatives close to zero are required. The authors of [9] showed that ReLU networks are
unable to fit the function f(x) = |x| if the layers are norm-constrained with � = 1. The reason lies in
fact that ReLU, and most other commonly used activations, do not have unit gradient with respect
to the inputs over their entire domain.

While element-wise activations like ReLU cannot have unit gradient over the whole domain without
being exactly linear, the authors of [10] explore activations that introduce nonlinearities by reordering
elements of the input vector. They propose the following activation function:

� = GroupSort, (2.9)

which sorts its inputs in chunks (groups) of a fixed size. This operation has gradient 1 with respect to
every input and gives architectures constrained with Eq. (2.6) increased expressive power. In addition,
we have found that using this activation function also results in achieving su�cient expressiveness with
a small number of weights, making the networks ideal for use in resource-constrained applications.

3 Example Applications to Simple Models

Before applying our new architecture to real-time data-processing at the LHC, we first demonstrate
that it behaves as expected on some simple toy problems.

3.1 Robustness to Outliers

We will demonstrate the robustness that arises from the Lipschitz constraint by making a simple toy
regression model to fit to data sampled from a 1-dimensional function with one particularly noisy data
point. The underlying model that we sample from here has the form

y = sin(x) + ✏(x), (3.1)

– 4 –

Anil, Cem, James Lucas, and Roger Grosse. 
"Sorting out Lipschitz function 
approximation." International Conference on 
Machine Learning. PMLR, 2019.
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Figure 4. Signal e�ciency as a function of the transverse momentum for the two-body selection (left)
and three-body selection (right). The di↵erent scenarios are displayed, corresponding to either a nominal
output rate of the topological trigger of 30 kHz, twice the nominal output rate or half of it. The e�ciency
is evaluated on a Monte Carlo Sample for the decay B+

! D̄0D+
s .

class of architectures increases the sensitivity to candidates with a higher momentum budget,
thereby boosting sensitivity to long-lived beauty and BSM candidates. Whilst the optimisation
of such triggers in Run 3 is ongoing, a preliminary successful inclusive selection of beauty decays
has already been demonstrated. This contribution demonstrates that the current algorithm is
successful in the selection of inclusive beauty candidates when evaluated on two simulated probe
decay channels that are not included in the training set. For the future, the selection algorithms
will be refined further and optimised to achieve ideal timing while maximising signal e�ciency.
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Training Samples𝛬0𝑏 → (𝛬𝑐(2625)+ → (𝛬+𝑐 → 𝑝+𝐾−𝜋+)𝜋+𝜋−)𝜇−𝜈𝜇 𝐵+ → 𝜇+𝜇−𝜇+𝜈𝜇𝐵+ → (𝐷0 → 𝐾+𝜋−)(𝐾0𝑆 → 𝜋+𝜋−)𝜋+ 𝛬0𝑏 → 𝑝+𝜇−𝜈𝜇𝐵0 → (𝐷0 → 𝐾−𝜋+𝜋+𝜋−)(𝐷0 → 𝐾+𝜋−) 𝐵+ → 𝐾+𝜇+𝜇−𝜇+𝜇−𝜇+𝜇−𝐵+ → (𝐷0 → 𝐾+𝜋−)𝜋+𝜋−𝜋+ 𝐵+𝑐 → (𝐽/𝜓(1𝑆) → 𝜇+𝜇−)𝜇+𝜈𝜇𝐵0𝑠 → (𝐷𝑠− → 𝐾+𝐾−𝜋−)𝜈𝜇𝜇+ 𝐵0𝑠 → 𝐾−𝜈𝜇𝜇+𝐵+ → (𝐷⋆+(2010) → (𝐷0 → 𝐾−𝜋+)𝜋+)(𝐷0 → 𝐾+𝜋−) 𝐵0𝑠 → 𝐾−(𝜏+ → 𝜇+𝜈𝜇𝜈𝜏)𝜈𝜏𝐵0 → (𝐷⋆− → 𝜋−(𝐷0 → 𝐾+𝜋−))(𝜏+ → 𝜋+𝜋+𝜋−𝜈𝜏)𝜈𝜏 𝐵+ → 𝜋+𝜋−𝐾+𝐵+𝑐 → (𝐽/𝜓(1𝑆) → 𝜇+𝜇−)(𝜏+ → 𝜇+𝜈𝜇𝜈𝜏)𝜈𝜏 𝐵0 → (𝐾⋆0(892) → 𝐾+𝜋−)𝛾𝐵− → (𝐷0 → 𝐾−𝜋+)(𝜏− → 𝜇−𝜈𝜏𝜈𝜇)𝜈𝜏 𝐵− → 𝑝+𝑝−(𝜏− → 𝜇−𝜈𝜇𝜈𝜏)𝜈𝜏𝐵+ → (𝐷⋆0 → 𝜋0((𝐷0 → 𝐾+𝜋−))(𝜏+ → 𝜋+𝜋−𝜋+𝜈𝜏)𝜈𝜏 𝐵− → 𝑝+𝑝−𝜇−𝜈𝜇


