A Detailed Study of Interpretability of Deep Neural
Network based Top Taggers

Ayush Khot, Mark S. Neubauer, and Avik Roy'
Department of Phy, National Center for Supercomputing Applications (NCSA)
Iniversity of Illinois at Urbana-Champaign

akhot2@illinois.edu, msn@illinois.edu, avroy@illinois.edu

Interpretability Inspires:
Explainable Al for DNN Top
Taggers

ABSTRACT: Recent developments in the methods of explainable AI (XAI) allow researchers
to explore the inner workings of deep neural networks (DNNs), revealing crucial information
about input-output relationships and realizing how data connects with machine learning
models. In this paper we explore interpretability of DNN models designed to identify jet
coming from top quark decay in high energy proton-proton collisions at the Large Hadron
Collider (LHC). We review a subset of existing top tagger models and explore different
quantitative methods to identify which features play the most important roles in identifying
igate how and why feature importance varies across different
XAI metrics, how correlations among features impact their explainability, and how latent
space representations encode information as well as correlate with physically meaningful
Our studies uncover some major pitfalls of existing XAI methods and illustrate
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how they can be overcome to obtain consistent and meaningful interpretation of these
models. We additionally illustrate the activity of hidden layers as Neural Activation Pattern
(NAP) diagrams and demonstrate how they can be used to understand how DN

information across the layers and how this understanding can help to make such models

These studies not only facilitate a methodological approach to interpreting models but
also unveil new insights about what these models learn. Incorporating these observations
into augmented model design, we propose the Particle Flow Interaction Network (PFIN)
model and demonstrate how interpretabil nspired model augmentation can improve top
tagging performance.
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Explainable Al (XAl) for Top Tagging

Top tagging: |dentify jets originating from top
quarks amid background (e.g. QCD)

We want to answer a few fundamental
questions about model explanations-

o  What features are important?
o  Areinterpretations consistent across methods?
If not, why?
o How information travels within a model?
o What do networks learn in their latent spaces?
Studies done with benchmark top-tagging

dataset (includes 1M top and 1M QCD jets)
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https://zenodo.org/record/2603256
https://zenodo.org/record/2603256
https://docs.aws.amazon.com/whitepapers/latest/model-explainability-aws-ai-ml/interpretability-versus-explainability.html

Methods of Explainability

Occlusion test with AAUC score
o Find feature ranking based on replacing certain features
with their mean values and calculating the change in
model's ROC-AUC score
SHAP scores [link]:
o Use the model-agnostic Kernel SHAP approach to identify
the weighted marginal contribution of each feature
Layer-wise Relevance Propagation (LRP) [link]:
o Back propagates the score from the final output layer to
original inputs using a linear redistribution

Neural Activation Pattern (NAP diagram):

o Relative Neural Activity (RNA) at each node and visualises

information pathways along with model’s sparsity

AAUC | SHAP | LRP | RNA/NAP
Scalability in input dimension X X v v
Local explanation X v v X
Global explanation v v v v
Requires Forward Propagation v v v v
Requires Backward Propagation X X v X
Susceptible to spurious correlations v v v X
Addresses Model Complexity X X X v
Requires Retraining X X X X



https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
https://iphome.hhi.de/samek/pdf/MonXAI19.pdf
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Feature Importance in TopoDNN

e Simplest DNN architecture, implemented with an MLP with
multiple hidden layers

Feature
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Making relevances relevant: Differential Relevance

Feature correlation for tops

Features

Differential relevance

f( T ) . Z T(l’z) + T(i.k) (first order approximation)

Mean-behavior relevance
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|Mean-Behavior Relevance Score|

e When features are uncorrelated (or weakly
correlated), calculate mean-behavior relevance by  ————— MAD ,
) . . Pe o I relevance:
simply replacing all features by their mean value g Mean Absolute Differential
. . P, 1 I
and then calculating their relevances ] — Relevance
. . . . . I—
e Differential relevance is more exact, determined g 0 m— Has a stronger resemblance
. . . . . 9 ® Py, » I . . .
by simply calculating the deviation in model’s & m— with the SHAP scores since this
. . . 3¢ — takes the “deviations” into
output when a particular feature is replaced by its R— e account, (Actually, diff. Rel. is
mean value ;= one of the leading terms that
S — contribute to SHAP score)
0.00 0.05 0.10 0.15

MAD Relevance Score



Neuron Activation Patterns (NAPs)

Understanding the model’s inner workings- detect
internal disentanglements, context-aware neural
pathways, hyperparameter reoptimization

Define Relative Neural Activity (RNA) score for
different nodes within a layer

N . .
RNA(j, k; S) = —2i=1 ;J,k(sz)
max; y;- a;k(si)

Observations:
o  The modelis very sparse
o  The information pathways for jet classes are
disentangled by layer 3, layer 4 is kind of redundant

Retrained the model with (120,40,6) hidden nodes,
got the same performance
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Image from 1810.05165
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https://arxiv.org/pdf/1810.05165.pdf

Interpretability Inspired Model
The Particle Flow Interaction Network

What did we learn from the XAl

studies of TopoDNN and PFN?

o PFN is limited by not
considering inter-particle
interactions is considered -
room for improvement!

o Latent space for PFN is sparse —
scope for model simplification

Augment the PFN model with a
Graph-net called Interaction
Network (IN)

Models the pairwise particle
interaction in the latent space
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Interpretability Inspired Model
The Particle Flow Interaction Network (PFIN)

Model Hyperparameters |

Number of constituents reduced to 60 (from 200) since only

Number of constituents, N, 60 < the most energetic constituents show up as important
Nodes in & Network 100,100,64)  ~ features

(
Nodes in ®; Network (128,128,64)
Nodes in @72 Network (128,128,64)

Network architectures are inspired by the NAP diagrams for

|

Nodes in F' Network (64,100,100) the PFN model
Latent space dimension 64 (s), 128 (c)
Number of Parameters 97k (s), 101k (c) ./
Performance Metrics |
; Outperforms both PFN and the IN models, comparable with
ROC-AUC 0.9839 (5)’ 0.9838 (C) -— ResNext and ParticleNet with a much smaller number of
Accuracy 0.937 (s), 0.937 (c) parameters and faster convergence

Background Rejection Rate (1/ep) 1041 (s), 1030 (c)




Interpreting PFIN: the Latent Space and the
Interaction Features

PFIN latent space shows a much stronger correlation with
the jet mass and the subjettiness variables Average impact on classification probability
We can investigate the importance of pairwise particle

interactions using MAD relevance of probability scores
Inter-particle interactions play a significant role in top jet
identification compared to QCD jets

top jets

Latent space learns to mimic physical observables
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Lessons Learned and Outlook

Just like models themselves, one size does not fit all for model
interpretation

Model explanations can be tricky and unreliable when-

o models have highly correlated inputs
o models that concurrently treat categorical and continuous features
o models whose inputs span over multiple orders

RNA scores and NAP diagrams reveal important insight into
model’s desired complexity, can we use them for in-situ model
optimization?

Latent spaces are interesting- can they mimic physical features in
more general settings (e.g. in multi-class classification) ?
Interpreting more complex models like graph nets, transformers
etc. may require even better techniques
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