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Wall clock consumption per workflow

ATLAS comn ® Geantd calo simulation is
a significant part of ATLAS

computing budget
ID (16%)

Other (4%) Muon Sys (2%) — CMS wiill face similar needs
with HGCAL in HL-LHC

Subdetector CPU fraction for 50 ttbar events
ATLAS CPU hours used by various activities in 2018 MC16 Candidate Release
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Wall clock consumption per workflow

ATLAS comn ® Geantd calo simulation is
a significant part of ATLAS

computing budget
- CMS will face similar needs
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Diffusion Models

e Diffusion has become the dominant paradigm for ML
Image generation

- Dalle-2, Midjourney, Stable Diffusion, etc

e Easy training, high quality results, reasonable computation

tl mes “Al aiding physicists at LHC to analyze data
and discover new particles”
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« Diffusion process: Starting with some image, |terat|vely add
Gaussian noise, eventually reaching pure noise

e Train a model to invert the diffusion process

* Generate by starting from noise image, iteratively denoise
using trained model

e Can condition on additional input information
- Eg. text prompt or incident particle energy


https://arxiv.org/abs/2006.11239

« Community challenge to compare
generative models for Calorimeter
simulation

e Standard datasets to allow
comparison

- Dataset1: ATLAS-like geometry, 5 layer . o
cylinder with irregular binning, 368 5
voxels

- Dataset2: 45 layers, 6480 total voxels ":
- Dataset3: 45 layers, 40,500 total voxels ‘5";‘
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https://calochallenge.github.io/homepage/

« We train diffusion models to generate “Gaussian Geant

synthetic calorimeter showers based on  Noise” Shower o Shower
400 Diffusion

Steps

Geant simulations

 We use 400 steps to interpolate from real
shower to Gaussian noise

e Denoising network is has ‘U-net’
architecture based on 3D convolutions

— Primary input: Noisy shower

- Conditioning inputs: incident particle energy
& diffusion step

* Training objective normalized noise
component of the shower

- Denoising — Subtracting noise off U-nets compress to a
« Several novel optimizations utilized smaller dim space but also
include skip connections .




e Regular convolutions assume pure translation symmetry
 Our data: phi is periodic, and R & Z not translation invariant

Implement cylindrical convolutions
to respect periodic boundary of phi

Allow convolutions to be conditional on

Input data Filter Kernel Convolution Output
2x2x2

(graphics source)

‘Circularly’ pad phi dimension
before 3D conv

R & Z by using additional channels
Shower
input

+
‘Radius \ \ / \
input’

+

‘Layer
input’

Additional input channels



https://indico.cern.ch/event/1159913/contributions/5062708/attachments/2540386/4373088/ml4jets2022_vqvae.pdf
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Dataset 2 (6.5k voxels)
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« Dataset 1 (ATLAS detector) is cylindrical but has irregular structure in
layers

- Different radial / angular bins in each layer = can'’t apply cylindrical convolutions
- Previous approaches have used fully connect networks or very large 1D CNN'’s

* Learn an embedding that maps input into regular cylindrical structure

Irregular Cylindrical Cylindrical Irregular
Input Input Output Output

Embed Reverse
Denoise
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e Train a NN classifier to distinguish between
Geant showers and CaloDiffusion showers

* Quantify sample quality based on AUC on
holdout set)

Classifier Very similar showers!
AUC *

~ Additional metrics in backup

*Preliminary numbers, somewhat dependent on exact classifier training setup 13



121 Geant4

« Some “global” properties (ie total shower energy), can N 1 Diffu
still be improved

- Hard to specifically optimize in diffusion training
- Will try batch-level MMD loss

8.

N Dataset 2
* Generation time is slower than other ML approaches :
b/c of iterated generation (still faster than Geant) A YOY: Lo 121
- Can be improved with different sampling algos, Data Noise
compression, or distillation methods -

2
3

(X0,0)

- Or start generation from approximate shower instead of
pure noise (“Cold Diffusion”, 2208.09392)

“Consistency Models” distill

. . diffusion model to allow ~few
* Extend to more complicated geometries e.g. CMS HGCal step generation

14


http://arxiv.org/abs/2208.09392
http://arxiv.org/abs/2303.01469

« CaloDiffusion able to generate very high quality
showers

« Utilized several optimizations for cylindrical
calorimeter geometries & new embedding approach
for irregular shapes

e Classifiers struggle to distinguish between Geant &
CaloDiffusion showers

e Future work: continue to optimize training, improve
generation time, more complicated geometries

15



e Co-author : Kevin Pedro

* This work was performed with support of the U.S. CMS
Software and Computing Operations Program under the U.S.
CMS HL-LHC R&D Initiative.

e Additionla support from the Fermi National Accelerator
Laboratory, managed and operated by Fermi Research

Alliance, LLC under Contract No. DE-AC02-07CH11359 with
the U.S. Department of Energy

 Thank you to the CaloChallenge organizers for the datasets
and evaluation code

- Michele Faucci Giannelli, Gregor Kasieczka, Claudius Krause, Ben
Nachman, Dalila Salamani, David Shih and Anna Zaborowska
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https://calochallenge.github.io/homepage/

Thanks!



Backup
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* ‘logit’ transformation of voxel energies and then standard scale to zero mean
and unit variance

- Correct preprocessing important for diffusion process, related to scale of added noise
» Denoising network uses ‘U-net’ architecture with cylindrical convolutions

- Two conditional inputs : shower energy and diffusion step
- ~400k params for datasetl1 and 2, 1.1M for dataset3

« 400 diffusion steps, ‘cosine’ noise schedule (2102.09672)

e Choices for training objective:
- Datasets 1 and 2 : Network is trained to predict noise component of image

- Dataset 3 : Network trained to predict weighted average of noise component and un-
noised image,
* More stable, recommended by 2206.00364

« Sampling uses DDPM algorithm (2006.11239)

19


http://arxiv.org/abs/2102.09672
https://arxiv.org/abs/2206.00364
http://arxiv.org/abs/2006.11239

e Distance metrics:

— Frechet Particle Distance and Kernel Particle Distance (proposed in 2211.10295)
e Use implementation proposed for CaloChallenge, based on high level shower features

- We find that the computation of FPD is slightly biased, ie non-zero values even
comparing different random samples of Geant to each other

— Compare scores for Diffu-Geant (D-G) vs Geant-Geant (G-G)

(D-(I.:?-F;[()S-G) 0.035/0.008 0.095/0.008 0.275/0.011
KPD

(D-G | G-G) 0.007/0 0.0001/0 0.0007 /0

20


https://arxiv.org/abs/2211.10295
https://github.com/CaloChallenge/homepage/pull/1

 First find superset of all radial/angular bins = embedding space
For each layer, embedding in radial dimensionisan M_ix M _*
matrix

- M_i (M_*) is number of radial bins in layer i (embedding space)

- Initialize weights be proportional to area overlap of bins + 107-3 *
Gaussian noise

Reverse matrix is M_* x M _i, initialized to pseudo-inverse of
embedding matrix

For now, enforcing phi symmetry, energy is split evenly among phi
bins (not learnable)

Found small benefits of conditioning on phiin additionto R & Z

— There is slight non-uniformity in phi in the energy distributions of dataset1
21



CMS simulation Prelimina

o Geanta
s --- Modified o
—— CNN ped
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Generated calorimeter showers with regular & ‘fast’ version of
Geant4

Use a CNN network to ‘denoise’ fast-sim shower image to match high
granularity one

Decent performance in a relatively simple setup

- Studies showed adding more info to the network beyond ‘energy image’ only
moderately improved performance

« Tried multiplicity, time of energy deposit, other Geant info

22


https://arxiv.org/abs/2202.05320

o Key advantage is that costly diffusion steps done in
smaller latent space

* Relies on encoder not losing any important info
- ‘perceptual loss’ supposed to reduce blurriness

- Small regularization of latent space (std. normal KL or vector
quantization) during AE training

* Conditioning setup very flexible
- Text prompts using some language model
- Image conditioning

23



Latent Space
[ Diffusion Process
z Denoising U-Net €g
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First encode your image with an autoencoder to a smaller latent space

- They used a factor of 4 or 8 for each dimm.
Transform your conditioning data into a latent rep

2112.10752

Denoising performed on the latent representation of your image, using conditioned data

- Conditioning done using an attention mechanism
Decode back into pixel space

24


https://arxiv.org/abs/2112.10752

* Score based (instead of denoising) diffusion model for
calorimeter generation

- Instead of Gaussian noise, more complicated Markov chain

— Learn score of the data (V log(p(x)) at each iter = can invert
process

- Converted to cartesian geometry (with some loss of
information) = no 1 to 1 comparison possible with our work

 Some ML literature showing score based and denoising
diffusion are connected

- See eg Appendix B3 of arXiv:2206.00364

25


https://arxiv.org/abs/2206.11898
https://arxiv.org/abs/2206.00364
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Irregular Cylindrical Cylindrical Irregular
Input Input Output Output

Embed Reverse

Denoise
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