


  2

The Need for Fast Simulation
● Geant4 calo simulation is 

a significant part of ATLAS 
computing budget
– CMS will face similar needs 

with HGCAL in HL-LHC

● For HL-LHC, computing 
simulation more crunched
– Reconstruction usage will 

scale ~linearly with pileup 
→ less resources for sim.
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Fast & Accurate Calorimeter
 Simulation is Needed!
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Diffusion Models
● Diffusion has become the dominant paradigm for ML 

image generation
– Dalle-2, Midjourney, Stable Diffusion, etc 

● Easy training, high quality results, reasonable computation 
times “AI aiding physicists at LHC to analyze data 

and discover new particles”
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Diffusion Models : Technical Details

● Diffusion process: Starting with some image, iteratively add 
Gaussian noise, eventually reaching pure noise

● Train a model to invert the diffusion process
● Generate by starting from noise image, iteratively denoise 

using trained model
● Can condition on additional input information 

– Eg. text prompt or incident particle energy

 2006.11239 NSteps typically ~few hundred

https://arxiv.org/abs/2006.11239
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Dataset: Calo Challenge 
● Community challenge to compare 

generative models for Calorimeter 
simulation

● Standard datasets to allow 
comparison
– Dataset1: ATLAS-like geometry, 5 layer 

cylinder with irregular binning, 368 
voxels

– Dataset2: 45 layers, 6480 total voxels
– Dataset3: 45 layers, 40,500 total voxels

https://calochallenge.github.io/homepage/
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‘CaloDiffusion’
● We train diffusion models to generate 

synthetic calorimeter showers based on 
Geant simulations

● We use 400 steps to interpolate from real 
shower to Gaussian noise

● Denoising network is has ‘U-net’ 
architecture based on 3D convolutions
– Primary input: Noisy shower
– Conditioning inputs: incident particle energy 

&  diffusion step
● Training objective normalized noise 

component of the shower
– Denoising → subtracting noise off

● Several novel optimizations utilized 

“Gaussian 
Noise” Shower

Geant 
Shower

400 Diffusion 
Steps

U-nets compress to a 
smaller dim space but also 
include skip connections



  8

Optimizing for Cylindrical Data
● Regular convolutions assume pure translation symmetry
● Our data : phi is periodic, and R & Z not translation invariant

(graphics source)

Shower 
input

‘Radius 
input’

‘Layer 
input’

+

+

Implement cylindrical convolutions 
to respect periodic boundary of phi

Allow convolutions to be conditional on 
R & Z by using additional channels

‘Circularly’ pad phi dimension 
before 3D conv Additional input channels

https://indico.cern.ch/event/1159913/contributions/5062708/attachments/2540386/4373088/ml4jets2022_vqvae.pdf
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Average Showers

Geant



 

Results: Datasets 2 & 3

Dataset 3 (40k voxels)

Dataset 2 (6.5k voxels)
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Embedding Irregular Geometries
● Dataset 1 (ATLAS detector) is cylindrical but has irregular structure in 

layers
– Different radial / angular bins in each layer → can’t apply cylindrical convolutions
– Previous approaches have used fully connect networks or very large 1D CNN’s

● Learn an embedding that maps input into regular cylindrical structure 
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Dataset 1 Results
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Quantifying Performance
● Train a NN classifier to distinguish between 

Geant showers and CaloDiffusion showers
● Quantify sample quality based on AUC on 

holdout set)

Dataset 1 
(ATLAS-like)

Dataset 2 Dataset 3

Classifier 
AUC *

~0.65 ~0.6 ~0.7

*Preliminary numbers, somewhat dependent on exact classifier training setup

AUC much less than 1 →
Very similar showers!

Additional metrics in backup
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Future Work
● Some “global” properties (ie total shower energy), can 

still be improved
– Hard to specifically optimize in diffusion training
– Will try batch-level MMD loss

 
● Generation time is slower than other ML approaches 

b/c of iterated generation (still faster than Geant) 
– Can be improved with different sampling algos, 

compression, or distillation methods 
– Or start generation from approximate shower instead of 

pure noise (“Cold Diffusion”, 2208.09392)

● Extend to more complicated geometries e.g. CMS HGCal 
“Consistency Models” distill 

diffusion model to allow ~few 
step generation

http://arxiv.org/abs/2208.09392
http://arxiv.org/abs/2303.01469
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Outlook
● CaloDiffusion able to generate very high quality 

showers
● Utilized several optimizations for cylindrical 

calorimeter geometries & new embedding approach 
for irregular shapes

● Classifiers struggle to distinguish between Geant & 
CaloDiffusion showers

● Future work: continue to optimize training, improve 
generation time, more complicated geometries
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Thanks!
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Backup
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Technical Details
● ‘logit’ transformation of voxel energies and then standard scale to zero mean 

and unit variance
– Correct preprocessing important for diffusion process, related to scale of added noise

● Denoising network uses ‘U-net’ architecture with cylindrical convolutions
– Two conditional inputs : shower energy and diffusion step
– ~400k params for dataset1 and 2, 1.1M for dataset3

● 400 diffusion steps, ‘cosine’ noise schedule (2102.09672)
● Choices for training objective: 

– Datasets 1 and 2 : Network is trained to predict noise component of image
– Dataset 3 : Network trained to predict weighted average of noise component and un-

noised image, 
● More stable, recommended by 2206.00364

● Sampling uses DDPM algorithm (2006.11239)

http://arxiv.org/abs/2102.09672
https://arxiv.org/abs/2206.00364
http://arxiv.org/abs/2006.11239
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Additional Metrics
● Distance metrics:

– Frechet Particle Distance and Kernel Particle Distance (proposed in 2211.10295)
● Use implementation proposed for CaloChallenge, based on high level shower features

– We find that the computation of FPD is slightly biased, ie non-zero values even 
comparing different random samples of Geant to each other 

– Compare scores for Diffu-Geant (D-G) vs Geant-Geant (G-G)

Dataset 1 
(ATLAS-like)

Dataset 2 Dataset 3

FPD
 (D-G / G-G) 0.035 / 0.008 0.095 / 0.008 0.275 / 0.011

KPD
(D-G / G-G)

0.007 / 0 0.0001 / 0 0.0007  / 0

https://arxiv.org/abs/2211.10295
https://github.com/CaloChallenge/homepage/pull/1
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Embedding Details
● First find superset of all radial/angular bins → embedding space
● For each layer, embedding in radial dimension is an M_i x M_* 

matrix 
– M_i (M_*) is number of radial bins in layer i (embedding space)
– Initialize weights be proportional to area overlap of bins + 10^-3 * 

Gaussian noise
● Reverse matrix is M_* x M_i, initialized to pseudo-inverse of 

embedding matrix
● For now, enforcing phi symmetry, energy is split evenly among phi 

bins (not learnable)
● Found small benefits of conditioning on phi in addition to R & Z

– There is slight non-uniformity in phi in the energy distributions of dataset1
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Previous Work (arXiv:2202.05320)

● Generated calorimeter showers with regular & ‘fast’ version of 
Geant4

● Use a CNN network to ‘denoise’ fast-sim shower image to match high 
granularity one

● Decent performance in a relatively simple setup
– Studies showed adding more info to the network beyond ‘energy image’ only 

moderately improved performance 
● Tried multiplicity, time of energy deposit, other Geant info

https://arxiv.org/abs/2202.05320
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Latent Diffusion Models
● Key advantage is that costly diffusion steps done in 

smaller latent space
● Relies on encoder not losing any important info

– ‘perceptual loss’ supposed to reduce blurriness
– Small regularization of latent space (std. normal KL or vector 

quantization) during AE training
● Conditioning setup very flexible

– Text prompts using some language model
– Image conditioning
– …
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Stable Diffusion (aka Latent Diffusion)

● First encode your image with an autoencoder to a smaller latent space
– They used a factor of 4 or 8 for each dimm. 

● Transform your conditioning data into a latent rep
● Denoising performed on the latent representation of your image, using conditioned data

– Conditioning done using an attention mechanism 
● Decode back into pixel space 

2112.10752

https://arxiv.org/abs/2112.10752
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Existing work: CaloScore ( 2206.11898)

● Score based (instead of denoising) diffusion model for 
calorimeter generation
– Instead of Gaussian noise, more complicated Markov chain
– Learn score of the data (∇xlog(p(x)) at each iter → can invert 

process
– Converted to cartesian geometry (with some loss of 

information) → no 1 to 1 comparison possible with our work
● Some ML literature showing score based and denoising 

diffusion are connected 
– See eg Appendix B3 of arXiv:2206.00364 

https://arxiv.org/abs/2206.11898
https://arxiv.org/abs/2206.00364
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CaloScore Plots
D-2

D-3
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Geometry Diagram

Denoise 

...

Reverse
...

Irregular 
Input

Cylindrical 
Input

Cylindrical 
Output

Irregular 
Output


