Fast & Accurate Calorimeter Simulation With Diffusion Models

Oz Amram In collaboration with Kevin Pedro

FERMILAB-SLIDES-23-052-PPD

The Need for Fast Simulation

Wall clock consumption per workflow

ATLAS CPU hours used by various activities in 2018

MC16 Candidate Release

- Geant4 calo simulation is a significant part of ATLAS computing budget
 - CMS will face similar needs with HGCAL in HL-LHC

- For HL-LHC, computing simulation more crunched
 - Reconstruction usage will scale ~linearly with pileup
 → less resources for sim.

The Need for Fast Simulation

Diffusion Models

- Diffusion has become the dominant paradigm for ML image generation
 - Dalle-2, Midjourney, Stable Diffusion, etc.
- Easy training, high quality results, reasonable computation times "AI aiding physicists at LHC to analyze data

and discover new particles"

Diffusion Models : Technical Details

- Diffusion process: Starting with some image, **iteratively add** Gaussian noise, eventually reaching pure noise
- Train a model to invert the diffusion process
- Generate by starting from noise image, **iteratively denoise** using trained model
- Can condition on additional input information
 - Eg. text prompt or incident particle energy

Dataset: Calo Challenge

- Community challenge to compare generative models for Calorimeter simulation
- Standard datasets to allow comparison
 - Dataset1: ATLAS-like geometry, 5 layer cylinder with irregular binning, 368 voxels
 - Dataset2: 45 layers, 6480 total voxels
 - Dataset3: 45 layers, 40,500 total voxels

'CaloDiffusion'

- We train diffusion models to generate synthetic calorimeter showers based on Geant simulations
- We use **400 steps** to interpolate from real shower to Gaussian noise
- Denoising network is has 'U-net' architecture based on 3D convolutions
 - Primary input: Noisy shower
 - Conditioning inputs: incident particle energy & diffusion step
- Training objective normalized noise component of the shower
 - Denoising \rightarrow subtracting noise off
- Several novel optimizations utilized

U-nets compress to a smaller dim space but also include skip connections

Optimizing for Cylindrical Data

- Regular convolutions assume pure translation symmetry
- Our data : phi is **periodic**, and R & Z **not translation invariant**

Implement **cylindrical convolutions** to respect periodic boundary of phi

Allow convolutions to be **conditional on R & Z** by using additional channels

'Circularly' pad phi dimension before 3D conv

Additional input channels

Average Showers

Results: Datasets 2 & 3

Embedding Irregular Geometries

- Dataset 1 (ATLAS detector) is cylindrical but has **irregular structure** in layers
 - Different radial / angular bins in each layer \rightarrow can't apply cylindrical convolutions
 - Previous approaches have used fully connect networks or very large 1D CNN's
- Learn an **embedding** that maps input into **regular cylindrical structure**

Dataset 1 Results

12

Quantifying Performance

- Train a NN classifier to distinguish between Geant showers and CaloDiffusion showers
- Quantify sample quality based on AUC on holdout set)

	Dataset 1 (ATLAS-like)	Dataset 2	Dataset 3	AUC much less than $1 \rightarrow$	
Classifier AUC *	~0.65	~0.6	~0.7	very similar snowers!	

Additional metrics in backup

*Preliminary numbers, somewhat dependent on exact classifier training setup

Future Work

- Some "global" properties (ie total shower energy), can still be improved
 - Hard to specifically optimize in diffusion training
 - Will try batch-level MMD loss
- Generation time is slower than other ML approaches b/c of iterated generation (still faster than Geant)
 - Can be improved with different sampling algos, compression, or **distillation methods**
 - Or start generation from **approximate shower** instead of pure noise ("Cold Diffusion", 2208.09392)
- Extend to more complicated geometries e.g. CMS HGCal

"Consistency Models" distill diffusion model to allow ~few step generation

 $f_{\theta}(\mathbf{x}_T)$

Outlook

- CaloDiffusion able to generate very high quality showers
- Utilized several optimizations for cylindrical calorimeter geometries & new embedding approach for irregular shapes
- Classifiers struggle to distinguish between Geant & CaloDiffusion showers
- Future work: continue to optimize training, improve generation time, more complicated geometries

Acknowledgements

- Co-author : Kevin Pedro
- This work was performed with support of the U.S. CMS Software and Computing Operations Program under the U.S. CMS HL-LHC R&D Initiative.
- Additionla support from the Fermi National Accelerator Laboratory, managed and operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy
- Thank you to the CaloChallenge organizers for the datasets and evaluation code
 - Michele Faucci Giannelli, Gregor Kasieczka, Claudius Krause, Ben Nachman, Dalila Salamani, David Shih and Anna Zaborowska

Thanks!

Technical Details

- 'logit' transformation of voxel energies and then standard scale to zero mean and unit variance
 - Correct preprocessing important for diffusion process, related to scale of added noise
- Denoising network uses 'U-net' architecture with cylindrical convolutions
 - Two conditional inputs : shower energy and diffusion step
 - ~400k params for dataset1 and 2, 1.1M for dataset3
- 400 diffusion steps, 'cosine' noise schedule (2102.09672)
- Choices for training objective:
 - Datasets 1 and 2 : Network is trained to predict noise component of image
 - Dataset 3 : Network trained to predict weighted average of noise component and unnoised image,
 - More stable, recommended by 2206.00364
- Sampling uses DDPM algorithm (2006.11239)

Additional Metrics

- Distance metrics:
 - Frechet Particle Distance and Kernel Particle Distance (proposed in 2211.10295)
 - Use implementation proposed for CaloChallenge, based on high level shower features
 - We find that the computation of FPD is slightly biased, ie non-zero values even comparing different random samples of Geant to each other
 - Compare scores for Diffu-Geant (D-G) vs Geant-Geant (G-G)

	Dataset 1 (ATLAS-like)	Dataset 2	Dataset 3
FPD (D-G / G-G)	0.035 / 0.008	0.095 / 0.008	0.275 / 0.011
KPD (D-G / G-G)	0.007 / 0	0.0001/0	0.0007 /0

Embedding Details

- First find superset of all radial/angular bins \rightarrow embedding space
- For each layer, embedding in radial dimension is an M_i x M_* matrix
 - M_i (M_*) is number of radial bins in layer i (embedding space)
 - Initialize weights be proportional to area overlap of bins + 10^-3 * Gaussian noise
- Reverse matrix is M_* x M_i, initialized to pseudo-inverse of embedding matrix
- For now, enforcing phi symmetry, energy is split evenly among phi bins (not learnable)
- Found small benefits of conditioning on phi in addition to R & Z
 - There is slight non-uniformity in phi in the energy distributions of dataset1

Previous Work (arXiv:2202.05320)

- Generated calorimeter showers with regular & 'fast' version of Geant4
- Use a CNN network to 'denoise' fast-sim shower image to match high granularity one
- Decent performance in a relatively simple setup
 - Studies showed adding more info to the network beyond 'energy image' only moderately improved performance
 - Tried multiplicity, time of energy deposit, other Geant info

Latent Diffusion Models

- Key advantage is that costly diffusion steps done in smaller latent space
- Relies on encoder not losing any important info
 - 'perceptual loss' supposed to reduce blurriness
 - Small regularization of latent space (std. normal KL or vector quantization) during AE training
- Conditioning setup very flexible
 - Text prompts using some language model
 - Image conditioning

Stable Diffusion (aka Latent Diffusion)

- First encode your image with an autoencoder to a smaller latent space
 - They used a factor of 4 or 8 for each dimm.
- Transform your conditioning data into a latent rep
- Denoising performed on the latent representation of your image, using conditioned data
 - Conditioning done using an attention mechanism
- Decode back into pixel space

2112.10752

Existing work: CaloScore (2206.11898)

- Score based (instead of denoising) diffusion model for calorimeter generation
 - Instead of Gaussian noise, more complicated Markov chain
 - Learn score of the data ($\nabla_x \log(p(x))$) at each iter \rightarrow can invert process
 - Converted to cartesian geometry (with some loss of information) \rightarrow no 1 to 1 comparison possible with our work
- Some ML literature showing score based and denoising diffusion are connected
 - See eg Appendix B3 of arXiv:2206.00364

CaloScore Plots

Geometry Diagram

