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Continual Learning (CL)

Concept: Train a model with a continuous stream of data

Learns from a sequence of partial experiences rather 
than all the data at once

Advantages:

● Avoids catastrophic forgetting → initial training is not 
disregarded

● Adapts to a changing data stream → don’t need to 
quantify how the environment changes

● Don’t need to store previous training data or retrain model

Disadvantages:

● For supervised learning need a ~continual stream of 
labelled data which might not be accessible

Non-stationary stream of 

experiences

CL 

Algorithm
[ref]

C. Brown Deployment of ML in Changing Environments

https://arxiv.org/abs/2104.00405


Motivation

• Changes to the input distribution of a model can lead to a model being invalid or 

sub optimal

• Having to retrain a model offline means there is a loss of accuracy until the 

newly retrained model is online

• For the duration of the retraining of the model you are working with a model that 

you know is suboptimal 

• This is can be relevant in the context of CERN trigger system and other 

constrained environments 



C. Brown Deployment of ML in Changing Environments
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Training

• It is computationally expensive

• Usually done on GPUs 

• Embedded systems, constrained environments do not have accelerators
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Goal

Find an alternative to stochastic gradient descend (SGD) to allow 

CL on embedded system 
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Alternating Minimisation (AltMin)

• An alternative to SGD 

• Open source 

• Proof of concept

• Experiments are reproducible 

http://proceedings.mlr.press/v97/choromanska19a/choromanska19a.pdf



AltMin vs SGD
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L1 L2 L3 L4 L5 L6 L7 L8

Forward pass

Backward pass
L1 cost function depends on all

the previous layers

SGD

AltMin

C1 C2 C3 C4 C5 C6 C7 C8

• Forward pass populates 

“codes”

• Cost function depends 

only on the previous layer 

(No chain rule)

AltMin drops one order of 

complexity



AltMin vs SGD
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Dataset

Modeled a "typical" High Luminosity LHC event that emulates the CMS phase-2 upgraded detector

Dataset created from a top quark pair production sample generated in Pythia with an additional 

200 soft proton-proton interactions overlayed on top

Tracks were generated using Delphes running a simulation of the high lumi CMS detector, tracks 

kinematically constrained to pT > 2 GeV, |eta| < 2.4 and |z0| < 15 cm to emulate a CMS level-1 

tracking set of tracks

Tracks were then reprocessed in python to generate two datasets, an unsmeared dataset of 

10,000 events, taken directly from the Delphes output and another 10,000 events that were 

smeared using a gaussian smear on each track parameter. This smearing was gradually increased 

across a set of 10 separate smearings to give a set of 10 individual experiences for the CL algo. 

Smearings emulate a worsening of detector resolution over time
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Network
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• The model takes 5 features as input

• There are two hidden layers with 25 and 30 neurons 

respectively

• Track eta, phi, pt and z0 are track helix parameters taken 

from the delphes simulation and smeared using a 

guassian smear for the smeared datasets

• Track dZ is the distance between the track z0 and a 

primary vertex found in the event using a simple histogram 

based vertex algorithm

• The target is whether the track originated from the 

underlying top quark pair production or from the additional 

soft pileup



Experimental setup

• Trained on non smeared data

• Executed the CL model on smeared data 

• Compared against SGD
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Training convergence
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Network accuracy (CL)
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Number of epocs
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Conclusions

• AltMin is a valid alternative to SGD

• Experiments show that both techniques have comparable performance

• Future work: aim to implement AltMin in C++/CUDA
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Backup
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Alternating Minimisation (continued)

• The algorithm stores code variables in the forward pass that are equal to a 

linear transformation of the previous-layer activations

• These code variables are used to propagate the error backwards

• These code variables are then used to update the network’s weights after 

each iteration
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