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- Exa.TrkX is a collaboration developing next-
generation Graph Neural Network (GNN)
reconstruction for HEP:

W i el e

\ ¢ /',' 7 4 7 -
\\\ "\un“,/’ y/ &

///

NuGraph2 -V Hewes - 9th May 2023 2


https://indico.jlab.org/event/459/contributions/11447/

@ cINCINNAT
=xa. [rkX

Exa.TrkX is a collaboration developing next-
generation Graph Neural Network (GNN)
reconstruction for HEP:

Energy Frontier

Expand on HEP.TrkX's prototype GNN
for HL-LHC.

Incorporate into ATLAS's simulation
and validation chain.
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@ cINCINNAT
=xa. [rkX

Exa.TrkX is a collaboration developing next-
generation Graph Neural Network (GNN)
reconstruction for HEP:

Energy Frontier

Expand on HER.TrkX's prototype GNN
for HL-LHC. 7

Incorporate into ATLAS's simulation
and validation chain.

Intensity Frontier !

Explore viability of HEPTrKX network for |, -

neutrino physics.

Develop GNN-based reconstruction for
Liguid Argon TPCs.
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Exa.TrkX is a collaboration developing next-
generation Graph Neural Network (GNN)
reconstruction for HEP:
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Incorporate into ATLAS's simulation
and validation chain. !
Intensity Frontier IE
Explore viability of HEPTrkX network for 1, -
neutrino physics. ¥

Develop GNN-based reconstruction for
Liquid Argon TPCs.

See Paulo Calafiura's overview talk!
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@ cINCINNAT

Liquid Argon TPCs

- Liquid Argon Time Projection Chambers (LArTPCs) currently a heavily

utilised detector techno

- At FNAL: MicroBooN

ogy in neutrino physics.
E, Icarus, SBND.

- Future: DUNE (70kT LArTPC deep underground, plus near detector).

- Charged particles ionize liquid

argon as they travel.

lonisation electrons drift due to

HV electrode field, and

collected by anode wires.

- Wire spacing ~3mm —

high-resolution detector. “w il
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@ CINGINNATI
NuGraph?2

- NuGraph?2 is Exa.TrkX's second-generation GNN
architecture for semantically labelling LArTPC
detector hits according to particle type.

- Utilise a multi-head attention message-passing
mechanism within each detector plane.

- Incorporate a number of improvements over first-
generation proof-of-concept model
(arxiv:2103.06233).

- Incorporate nexus connections allowing
iInformation to pass between planes.
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@ CINGINNATI
NuGraph?2

- NuGraph?2 is Exa.TrkX's second-generation GNN

architecture for semantically labelling LArTPC "%,
detector hits according to particle type. %,9
- Utilise a multi-head attention message-passing \?%
mechanism within each detector plane. %o
- Incorporate a number of improvements over first- Nucleus
generation proof-of-concept model
(arxiv:2103.06233).

- Incorporate nexus connections allowing
iInformation to pass between planes.

- Network trained on simulated neutrinos from
MicroBooNE's Open Data Release.

- See talk by Giuseppe Cerati this afternoon!
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@ cINCINNAT

D Nexus convolutions

- Perform message-passing independently in each detector view.
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D Nexus convolutions

+ Perform message-passing independently in each detector view.
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- Perform message-passing independently in each detector view.
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D Nexus convolutions

+ Perform message-passing independently in each detector view.
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@ cINCINNAT

D Nexus convolutions

- Add additional 3D step to the standard message-passing loop.
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@ cINCINNAT

3D Nexus convolutions

- Add additional 3D step to the standard message-passing loop.

Pass features from 2D nodes to ' ‘
shared 3D nodes generated from
simple spacepoint reconstruction
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@ cINCINNAT

3D Nexus convolutions

Add additional 3D step to the standard message-passing loop.

Pass features from 2D nodes to
shared 3D nodes generated from
simple spacepoint reconstruction

Convolve each 3D node to mix
together features from all views
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3D Nexus convolutions

Add additional 3D step to the standard message-passing loop.

Pass features from 2D nodes to
shared 3D nodes generated from
simple spacepoint reconstruction

@ cINCINNAT

Convolve each 3D node to mix
together features from all views

Propagate 3D features back down to
2D nodes and concatenate with 2D
features to provide additional context.
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@ CINGINNATI
NuGraph?2

Network achieves ~86% overall hit classification accuracy.

- With 3D connections, consistency of representations between views is now around 98%,
compared to ~70% without.
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NuGraph?2

Network achieves ~86% overall hit classification accuracy.

- With 3D connections, consistency of representations between views is now around 98%,
compared to ~70% without.
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@ CINGINNATI
NuGraph?2

Network achieves ~86% overall hit classification accuracy.

- With 3D connections, consistency of representations between views is now around 98%,
compared to ~70% without.

Inference takes 0.12 s / event on CPU.
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@ cINCINNAT

DISCUSSION

Network performance on the Michel class primarily True semantic labels
driven by class imbalance in training dataset. . . v
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DISCUSSION

Network performance on the Michel class primarily

driven by class imbalance in training dataset.

EM showers have large hit multiplicity, and make

up > 50% of hits in training dataset.

By contrast, Michel electrons are low multiplicity,

and make up < 1% of hits in training dataset.

Looking forward: multiple decoders.

@ cINCINNAT

True semantic labels
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DISCUSSION

Network performance on the Michel class primarily

True semantic labels

driven by class imbalance in training dataset. .

EM showers have large hit multiplicity, and make
up > 50% of hits in training dataset.

By contrast, Michel electrons are low multiplicity,
and make up < 1% of hits in training dataset.
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DISCUSSION

Network performance on the Michel class primarily
driven by class imbalance in training dataset.

EM showers have large hit multiplicity, and make
up > 50% of hits in training dataset.

By contrast, Michel electrons are low multiplicity,

and make up < 1% of hits in training dataset.

Looking forward: multiple decoders.

Binary classifier for background hit rejection (ie.
cosmic hit rejection).

Event classifier for event identification (ie.
neutrino interaction flavour).

@ cINCINNAT

True semantic labels
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DISCUSSION

Network performance on the Michel class primarily
driven by class imbalance in training dataset.

EM showers have large hit multiplicity, and make
up > 50% of hits in training dataset.

By contrast, Michel electrons are low multiplicity,
and make up < 1% of hits in training dataset.

Looking forward: multiple decoders.

Binary classifier for background hit rejection (ie.
cosmic hit rejection).

Event classifier for event identification (ie.
neutrino interaction flavour).

Object condensation for instance segmentation
(ie. particle clustering).
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@ cINCINNAT

Discussion

Network performance on the Michel class primarily True semantic labels

driven by class imbalance in training dataset. y . v |
EM showers have large hit multiplicity, and make ' x
up > 50% of hits in training dataset. ,{
By contrast, Michel electrons are low multiplicity, g \ L \
and make up < 1% of hits in training dataset. \e s \{

Looking forward: multiple decoders. \ v} .
Binary classifier for background hit rejection (ie. T e e e

cosmic hit rejection).

True semantic labels

Event classifier for event identification (ie.
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—Xample v, interaction

True semantic labels
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—Xample v, interaction

Predicted semantic labels
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—xXample vy Interaction

Predicted semantic labels
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—Xample Ve Interaction

True semantic labels
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—Xample Ve Interaction

Predicted semantic labels
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—Xample Ve Interaction

Predicted semantic labels
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@ cINCINNAT

Common abstraction for neutrino experiments

Although the details of many neutrino physics experiments vary, the majority of them
share a common paradigm at a high level.

NOVA

_____ »e— Neutrino generator
(GENIE)

Particle simulation
(Geant4)

True light
depositions

Photoelectrons
on APDs

MicroBooNE Shared structure

_____ e Neutrino generator Event information

(GENIE)
<
Particle simulation _
(Geant4) True particles
True ionization True energy
electrons deposits
Pulses on
TPC wires Detector hits
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@ cINCINNAT

NuML & PyNuML

- The NUML package is a toolkit for writing physics event records to an HDF5 file
format.

- Hold low-level information such as simulated particles, hits, true energy
depositions etc.

- Generic data structure can be shared across experiments.

- Common interface with PandAna analysis toolkit (see CHEP 2021 talk).
- Available as [ ArSoft package on GitHub.
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@ cINCINNAT

NuML & PyNuML

- The NUML package is a toolkit for writing physics event records to an HDF5 file
format.

- Hold low-level information such as simulated particles, hits, true energy
depositions etc.

- Generic data structure can be shared across experiments.

- Common interface with PandAna analysis toolkit (see CHEP 2021 talk).

- Available as | ArSoft package on GitHub.

- The PyNuML package is designed to provide a generic, accessible, efficient and
flexible solution for many of the necessary tasks in leveraging ML for particle physics.

- Define particle ground truth labels for Geant4-simulated particles.
- Arrange detector hits into ML objects, ie. graphs, CNN pixel maps, etc.
- Efficiently preprocess ML inputs in parallel in HPC environments using MPI.

- Available as Python package on GitHub, or install with pip install pynuml!
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, iy University of
@ CINCINNAT
Summary

- NuGraph2 is a state-of-the-art graph neural network for
semantically labelling detector hits in neutrino physics experiments.

- Model developed and tested in MicroBooNE and DUNE, ana
designed to be utilised across many neutrino physics detectors.

- Targeting full particle reconstruction for next generation
architecture.

- Standardised process of producing ML inputs from HEP data for
general use with NeutrinoML toolkit.

- Toolkit utilised for MicroBooNE's public data release.

- Open-source, easy-to-install code packages.
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