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Mate Zoltan Farkas
Analysis Introduction

▶ Why conditional Invertible Neural Networks (cINNs)1?
• Many parameter fits: time-consuming

→ Posterior inference with cINNs is time-efficient
• cINN model preserve gradients

→ Applicable in differentiable workflows

▶ VH-Analysis at CMS:
• 3 Signal processes:

– gg → ZH
– qq → ZH
– qq → WH

• 13 Background processes:
– Drell-Yan Process
– tt̄ production
– Vector boson fusion Higgs production...

▶ Goal: infer the signal strength modifier
parameters µ = σ/σSM
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Mate Zoltan Farkas
Analysis Strategy and -Setup

▶ Analysis performed at CMS
▶ Based on simulated MC samples
▶ Analysis workflow:

1. Simulated events
2. Final state object selection
3. DNN process categorization
4. Fit

▶ Maximum likelihood fit:
• Histogrammed DNN scores

→ Used as condition c for the cINN
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Mate Zoltan Farkas
Conditional Invertible Neural Networks – Theory

▶ cINN architecture:
• Based on normalizing flows

→ invertibility and differentiability
• Alternating network blocks:

– Affine coupling blocks
– Permutation blocks

▶ Forward direction: training
• Approximate the unknown true posteriors

p(x|c)
• Map inputs to a N (z|0, 1)

▶ Backward direction: inference
• Sampling from N (z|0, 1) and inversion

→ Posterior samples
→ Predictions
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Network Setup – Inference Model

▶ Goal: infer signal modifier parameters {µi}
• Dataset contains expected {µi} and

nuisance parameter effects
• Scale processes with their µi

• Model uncertainties

▶ µ Priors:
• Signal: Γ-distribution

– Finer sampling around expected µ
– Sensitivity for µ ≳ 10

• Background:
– Lognormal ⟨x⟩ = 1± 27%

• Luminosity:
– Lognormal ⟨x⟩ = 1± 2%
– Affects all processes equally
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Mate Zoltan Farkas
Network Setup – Inference Model – Uncertainties

▶ Statistical uncertainties
• Expected measurement uncertainty
• MC sample size
• Both follow a Poisson distribution

▶ Systematic effects:
• Normalizing uncertainties

→ Process scaling
• Shape-changing uncertainties

→ Histogram template morphing
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Mate Zoltan Farkas
Signal Modifier Parameter Inference – Predictions

▶ 3 parameters groups per sensitivity:
• well-reconstructed parameters (µDY ...)
• unrecognized parameters (µVBF ...)
• weakly-recognized parameters (µlumi...)

▶ Signal: sensitivity threshold for small µ
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Mate Zoltan Farkas
Signal Modifier Parameter Inference – Posteriors (Asimov)
▶ Background (DY, ...):

• narrow posteriors = high sensitivity
▶ Unrecognized (VBF, ...):

• posteriors = priors
▶ Luminosity nuisance: weakly recognised
▶ Signal: broad posteriors → high

uncertainty
▶ Comparable results to likelihood fit
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Conclusion

▶ cINN is able to infer the signal strength
modifiers
→ applicable in HEP

▶ Good prediction performance
• Posterior width reflects network

sensitivity
• Signal: sensitivity drop for signal for

small µ
• Comparable results to likelihood fit

10/10

cINN

c

training training

inference inference

z1
z2
z3
...

µWH

µDY

µlumi

...

η1
η2
η3
..
ηn

x z N (zk|0, 1)xk ∼ pk(xk)



Backup



Mate Zoltan Farkas
Network Setup – cINN Architecture

▶ dim c = 235

▶ dimx = 17

• 3 signal modifier parameters
• 13 background modifier parameters
• 1 nuisance parameter (luminosity)

▶ 12 GLOW Blocks with permutation layers
▶ Subnetworks with 3 layers à 128 nodes with ReLU
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The GLOW Coupling Block Stellar Parameters from INNs 7

�

�1

�2

�2 �2

⊙ exp( ( , �)) + ( , �)�2 �1 �1 �1 �1

⊙ exp( ( , �)) + ( , �)�1 �2 �2 �2 �2 �1

�1 �1

�2

��

Sub-Network

Sub-Network

Conditional Affine Coupling Layer Forward Pass

�

�1

�2

�2 �2

( − ( , �)) ⊙ exp(− ( , �))�2 �1 �1 �1 �1

( − ( , �)) ⊙ exp(− ( , �))�1 �2 �2 �2 �2 �1

�1 �1

�2

��

Sub-Network

Sub-Network

Conditional Affine Coupling Layer Backward Pass

Figure 5. Schematic overview of the architecture of the conditional affine coupling blocks used in the cINN. In particular we show the

GLOW (Generative Flow; Kingma & Dhariwal 2018) configuration, where the outputs si() and ti() are computed by a single subnetwork

(for each i). The top panel shows how data is passed through the block in the forward direction (from x to z), while the bottom panel
displays the inverted case following the affine transformations in Equations(4) and (5).

GLOW (Generative Flow; proposed by Kingma & Dhari-
wal 2018) configuration (see Section 3.2 for details). In this
setting the forward mapping is modified to f (x; c) = z and
the inverse to x = g(z; c). The invertibility is given for fixed
condition c as

f ( · ; c)−1 = g( · ; c). (6)

In our regression problem the conditioning is given by the
observations. Therefore, as for the standard INN, during
training given an observation the network will learn to en-
code all information about the physical parameters in the
latent variables that was not contained in the observation.
Also analogous to the standard INN, we retrieve the de-
sired posterior distribution p(x|y) for a given observation y
by sampling the latent variables according to their Gaussian
priors and using the inverted network g:

xposterior = g(z; c = y), with z ∼ pZ (z) = N(z, 0, I), (7)

where I is the K × K unity matrix with K = dim(z).
One of the cINN benefits over the standard INN archi-

tecture is that no zero padding (as described in Ardizzone
et al. 2019a) is necessary if the dimension of [y, z] were to
exceed that of x, as the conditioning input c can be arbi-
trarily large in this approach and the dimension of z simply
matches that of x.

3.2 Architecture Details

To implement the cINN for our purposes we use the ’Frame-
work for Easily Invertible Architectures’ (FrEIA) for python
(Ardizzone et al. 2019a,b) based on the ’pytorch’ library
(Paszke et al. 2017).

In our problem the input x is given by the six physi-
cal parameters of the isochrone tables, so that, following the

cINN architecture, we also have six latent variables z. Our
cINN is conditioned on the observables, 2 and 5 magnitudes
for Wd2 and NGC 6397, respectively, and the individual stel-
lar extinctions, so that the condition c has the dimension 3 in
the Wd2 cases and 6 for NGC 6397. Ardizzone et al. (2019b)
also introduce a ’conditioning’ network which transforms the
input condition into some intermediate representation and
is trained jointly with the cINN. We do not use this addi-
tional network in our setup, as we find that given the few
observables in our problem the cINN tends to overfit to the
synthetic training data when employing a feature extraction
network, resulting in poor performance on the real bench-
mark data.

Our cINN consists of 16 conditional affine coupling
blocks, each in the GLOW configuration (Kingma & Dhari-
wal 2018), which reduces computational cost and speeds up
learning by jointly predicting the subnetwork outputs si()
and ti() using a single subnetwork. As in Ardizzone et al.
(2019b) we introduce an additional nonlinear transforma-
tion of the scale coefficients s,

sclamp =
2α
π

arctan
( s
α

)
, (8)

where α = 1.9, so that sclamp ≈ s for |s | � α and sclamp ≈ ±α
for |s | � α, in order to avoid instabilities induced by large

magnitudes of the exponential exp
(
sclamp

)
.

We alternate the conditional affine coupling blocks with
random permutation layers. The latter consist of random
orthogonal matrices which mix the information between the
two streams u1 and u2 in the coupling blocks. Following
Ardizzone et al. (2019b), these matrices are fixed during
training and cheaply invertible. The combination of these
permutation layers with the interlocked affine transforma-
tions of the affine coupling blocks ensures that the network

MNRAS 000, 1–38 (2020)
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Mate Zoltan Farkas
The Conditions – Nominal with µ = 1

▶ 4 channels: 2 SL + 2 DL
▶ 13 subcategories
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Mate Zoltan Farkas
Signal Modifier Parameter Inference – Latent Distributions

▶ Training: loss converges
▶ Latent space distribution follows N (0, 1)

▶ Sampling from N (0, 1) yields
well-approximated posteriors

...
15/10

cINN

c

training training

inference inference

z1
z2
z3
...

µWH

µDY

µlumi

...

η1
η2
η3
..
ηn

x z N (zk|0, 1)xk ∼ pk(xk)



Mate Zoltan Farkas
Signal Modifier Parameter Inference – Calibration Curves

▶ Calibration error: measure of model bias

ecal(q) =
N in

N
−q, q quantile; q ∈ [0, 1]

▶ N in: number of posteriors containing the
true MC value in their q quantile

▶ Ideal calibration: ecal(q) = 0

· · ·

▶ Max median absolute calibration error ≲ O(0.04)
⇒ No strong biases in the network model
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Morphing

f(x|mi) = f(x|0)︸ ︷︷ ︸
f0

+

T∑
j=1

∂f(x|m)

∂mj

∣∣∣∣
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j
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1
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j

∣∣∣∣∣
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f ′
jj
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2
j +O

(
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3
j

)

▶ Express the unknown derivatives f ′
j , f ′

jj

▶ 24 templates: 24 shape changing uncertainties
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