

A Method for Inferring Signal Strength Modifiers by Conditional Invertible Neural Networks CHEP 2023, Norfolk, Virginia Máté Zoltán Farkas, Svenja Diekmann, Niclas Eich, Martin Erdmann for the CMS Collaboration

9th May, 2023

Mate Zoltan Farkas

1. CMS VH-Analysis

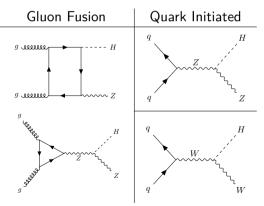
- Analysis Introduction
- Strategy & Setup
- 2. Conditional Invertible Neural Networks

3. Inference Model

- Synthetic Dataset Generation
- Uncertainty Modelling
- 4. Network Predictions & Performance
- 5. Conclusion & Summary

Analysis Introduction

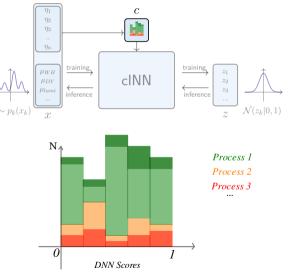
- Why conditional Invertible Neural Networks (cINNs)¹?
 - Many parameter fits: time-consuming
 - \rightarrow Posterior inference with cINNs is time-efficient
 - cINN model preserve gradients
 - \rightarrow Applicable in differentiable workflows
- ► VH-Analysis at CMS:
 - 3 Signal processes:
 - $-gg \rightarrow ZH$
 - $-qq \rightarrow ZH$
 - $-qq \rightarrow WH$
 - 13 Background processes:
 - Drell-Yan Process
 - $t\bar{t}$ production
 - Vector boson fusion Higgs production...
- Goal: infer the signal strength modifier parameters $\mu = \sigma / \sigma_{SM}$



¹2003.06281

Analysis Strategy and -Setup

- Analysis performed at CMS
- Based on simulated MC samples
- Analysis workflow:
 - 1. Simulated events
 - 2. Final state object selection
 - 3. DNN process categorization
 - 4. Fit
- Maximum likelihood fit:
 - Histogrammed DNN scores
 - \rightarrow Used as condition c for the cINN

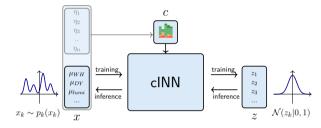


Conditional Invertible Neural Networks - Theory

Mate Zoltan Farkas

cINN architecture:

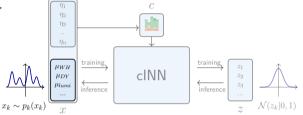
- Based on normalizing flows
 - \rightarrow invertibility and differentiability
- Alternating network blocks:
 - Affine coupling blocks
 - Permutation blocks
- Forward direction: training
 - Approximate the unknown true posteriors $p(\boldsymbol{x}|\boldsymbol{c})$
 - Map inputs to a $\mathcal{N}(z|0,1)$

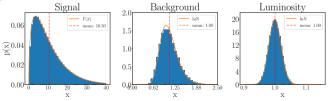


- ► Backward direction: inference
 - Sampling from $\mathcal{N}(z|0,1)$ and inversion
 - \rightarrow Posterior samples
 - $\rightarrow \mathsf{Predictions}$

Network Setup - Inference Model

- Goal: infer signal modifier parameters $\{\mu_i\}$
 - Dataset contains expected $\{\mu_i\}$ and nuisance parameter effects
 - Scale processes with their μ_i
 - Model uncertainties
- \blacktriangleright μ Priors:
 - Signal: Γ -distribution
 - Finer sampling around expected μ
 - Sensitivity for $\mu\gtrsim 10$
 - Background:
 - Lognormal $\langle x
 angle = 1 \pm 27\%$
 - Luminosity:
 - Lognormal $\langle x \rangle = 1 \pm 2\%$
 - Affects all processes equally



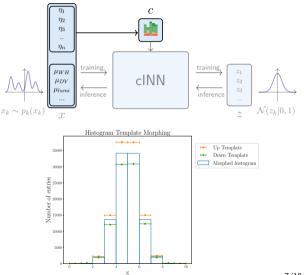


Network Setup - Inference Model - Uncertainties

Mate Zoltan Farkas

Statistical uncertainties

- Expected measurement uncertainty
- MC sample size
- Both follow a Poisson distribution
- Systematic effects:
 - Normalizing uncertainties
 - $\rightarrow \mathsf{Process} \ \mathsf{scaling}$
 - Shape-changing uncertainties
 - \rightarrow Histogram template morphing



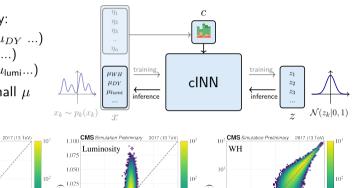
Signal Modifier Parameter Inference – Predictions

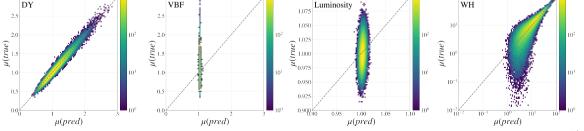
Mate Zoltan Farkas

- 3 parameters groups per sensitivity:
 - well-reconstructed parameters $(\mu_{DY} ...)$
 - unrecognized parameters (μ_{VBF} ...)
 - weakly-recognized parameters $(\mu_{\mathsf{lumi}...})$
- \blacktriangleright Signal: sensitivity threshold for small μ

Invulation Proliminary

3.0

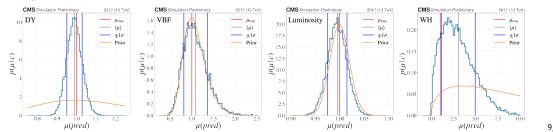


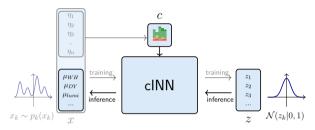


9/10

Signal Modifier Parameter Inference – Posteriors (Asimov)

- Background (DY, ...):
 - narrow posteriors = high sensitivity
- ▶ Unrecognized (VBF, ...):
 - posteriors = priors
- Luminosity nuisance: weakly recognised
- ► Signal: broad posteriors → high uncertainty
- Comparable results to likelihood fit



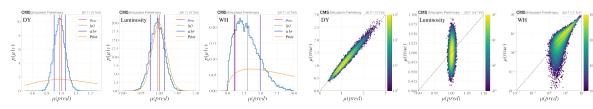


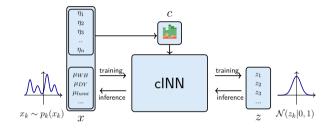
RWTHAACHEN UNIVERSITY

Mate Zoltan Farkas

Conclusion

- cINN is able to infer the signal strength modifiers
 - \rightarrow applicable in HEP
- Good prediction performance
 - Posterior width reflects network sensitivity
 - Signal: sensitivity drop for signal for small μ
 - Comparable results to likelihood fit



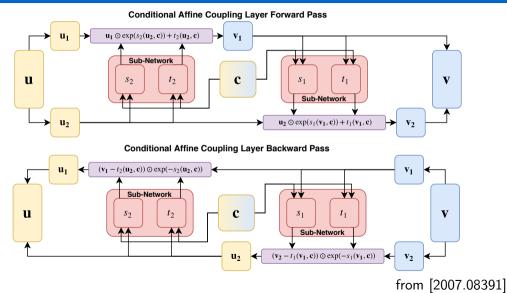


Backup

- $\blacktriangleright \dim c = 235$
- $\blacktriangleright \dim x = 17$
 - 3 signal modifier parameters
 - 13 background modifier parameters
 - 1 nuisance parameter (luminosity)
- ▶ 12 GLOW Blocks with permutation layers
- Subnetworks with 3 layers à 128 nodes with ReLU

The GLOW Coupling Block

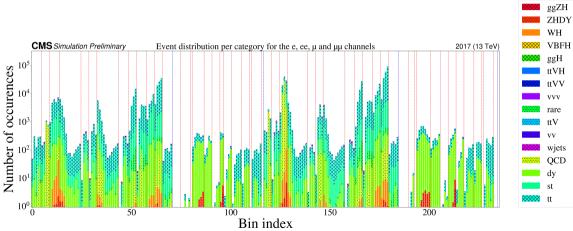
Mate Zoltan Farkas



13/10

The Conditions – Nominal with $\mu = 1$

- ▶ 4 channels: 2 SL + 2 DL
- 13 subcategories



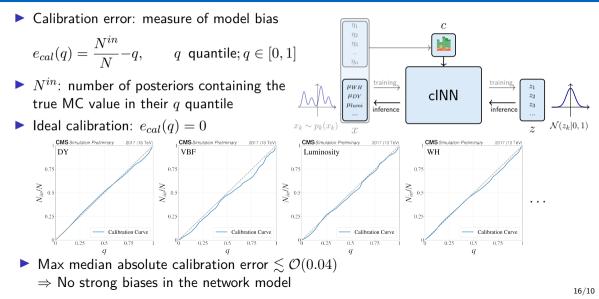
Signal Modifier Parameter Inference – Latent Distributions

C

Mate Zoltan Farkas

Training: loss converges Latent space distribution follows $\mathcal{N}(0,1)$ training training μ_{WH} CINN μ_{DY} z_2 Sampling from $\mathcal{N}(0,1)$ yields μ_{lumi} z_3 well-approximated posteriors $\mathcal{N}(z_k|0,1)$ xCMS Simulation Preliminary 2017 (13 TeV) 10.0 Test loss CMS Structurion Protonicuos CMS Structure Protonics CMS Simulation Preliminary 7.5 Training loss A00.11 - A(0, 1) - A(0, 1) Model Laten Model Latent Model Latent 112500 112500 112500 Distribution Distribution 5.0 Loss Z 75000 z ⁷⁵⁰⁰⁰ 2.5 z^{-7500} 0.0 37500 37500 37500 -2.5-5.020 Ó. 2000 4000 6000 8000 10000 Epochs . . .

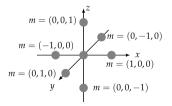
Signal Modifier Parameter Inference – Calibration Curves



Morphing

$$f(x|\mathbf{m}_i) = \underbrace{f(x|0)}_{f_0} + \sum_{j=1}^T \underbrace{\frac{\partial f(x|\mathbf{m})}{\partial m_j}}_{f'_j} |_{\mathbf{m}=0} (m_i)_j + \sum_{j=1}^T \underbrace{\frac{1}{2!} \frac{\partial^2 f(x|\mathbf{m})}{\partial m_j^2}}_{f'_{jj}} |_{\mathbf{m}=0} (m_i)_j^2 + \mathcal{O}\left((m_i)_j^3\right)$$

- Express the unknown derivatives f'_{j} , f'_{jj}
- 24 templates: 24 shape changing uncertainties



$$\begin{pmatrix} f\left(x|(0, 0, 0, ..., 0)\right) \\ f\left(x|(0, -1, 0, ..., 0)\right) \\ \vdots \\ f\left(x|(0, -1, 0, ..., 0)\right) \\ \vdots \\ f\left(x|(0, 0, 0, ..., 1)\right) \\ f\left(x|(0, 0, 0, ..., -1)\right) \end{pmatrix} = \underbrace{ \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & \cdots & 0 & 0 \\ 1 & -1 & 1 & 0 & 0 & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 1 & 0 & 0 & 0 & \cdots & -1 & 1 \\ 1 & 0 & 0 & 0 & \cdots & -1 & 1 \end{pmatrix} }_{M} \begin{pmatrix} f_{0} \\ f'_{1} \\ f'_{1} \\ \vdots \\ f'_{T} \\ f'_{TT} \end{pmatrix} \\ f(x|\mathbf{m}) = (1, m_{1}, m_{1}^{2}, ..., m_{T}, m_{T}^{2}) M^{-1} \mathbf{f}$$