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• This study builds on a previous CMS analysis [1], in which 16 Wilson Coefficients (WCs) 
in the framework of standard model effective field theory (SMEFT) were used to 
parameterize different types of new physics that could affect top quark production.

Data → Event Selection → Histograms → Statistical Analysis → Extracting Results

Limitation: Published 1D and 2D scans lose information about the WCs, and the other 
popular way to communicate LFs—the covariance matrix at a measured point—assumes 
Gaussianity.

Introduction

2[1]: https://doi.org/10.1007/JHEP03(2021)095
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Introduction

Data → Event Selection → Histograms → Statistical Analysis → Extracting Results

• Goal of this study:
• Following the proposal of efficiently distributing LFs as deep neural networks (DNNs) 

[2],
• Train a DNN to learn the profiled ΔNLL
• To produce a fast, differentiable, and portable approximation of the profiled ΔNLL 

with the NPs already profiled away—16 inputs (WCs), one output (ΔNLL).

3[2]: https://doi.org/10.1140/epjc/s10052-020-8230-1
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DNN Architecture
• Fully-connected, feed-forward with these sequential layers:

• A non-trainable standardization layer.

• A non-trainable quadratic layer that appends all the square and cross terms between 
the 16 inputs (𝑐!𝑐" for 1 ≤ 𝑖 ≤ 𝑗 ≤ 16) as additional inputs to the next layer.

• Two hidden layers with 700 nodes each feeding into one output (the NLL).

• A non-trainable layer that “de-standardizes” the output.
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DNN Training
• The sample has around 50 million points across the 16D space with the NPs profiled 

away in the process. 
• We use the MSE loss function.
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• Training set output (ΔNLL) distribution. 
Regions in the WC space with low NLL 
(high likelihood) are sampled more heavily 
to improve DNN performance in these 
regions of interest.

• Experimental data underlying the LF are 
multilepton events selected from 2017 
CMS data [1].

[1]: https://doi.org/10.1007/JHEP03(2021)095
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DNN Training

• Loss curve. Loss eventually approaches 
10-4 without the training and testing 
curves separating significantly, indicating 
an excellent fit without overfitting.
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DNN Training

• Accuracy curve. A point is considered 
accurate if the predicted output is within 
0.05 absolutely of or 1% relative to the 
target output.

• Eventually, the DNN reaches over 99% 
accuracy, confirming an excellent fit.
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DNN Training

• Residual plot. Other than the very few 
outliers at the bottom of the plot near the 
output value of 130, the residuals show no 
obvious pattern and concentrate around 
0, indicating a good fit across the range of 
outputs in the testing set.
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DNN Validation
• To further visualize the accuracy of the DNN, we show select 1D and 2D scans 

published in Ref. [1] compared to DNN predictions. 
• For statistical reasons, both the published and DNN-predicted curves (or surfaces in 2D 

scans) are shifted vertically so that their respective minimum is 0.
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• Example scans.

• Reminder: All the 
NPs are already 
profiled away, so 
these are “slices” of 
the 16D WC space.

[1]: https://doi.org/10.1007/JHEP03(2021)095

https://doi.org/10.1007/JHEP03(2021)095


DNN Validation

• 1D scans of 𝑐#$.
• Good agreement in all scans.
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DNN Validation

• 1D scans of 𝑐%&.
• Slight deviation in the bottom right plot 

(profiled, zoomed-in), due to different 
minimization algorithms settling in slightly 
different minima.

• Good agreement for the rest.
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DNN Validation

• Confidence contours of 2D scans of 𝑐$#
and 𝑐#$.

• Good agreement in both scans.
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DNN Validation

• Confidence contours of 2D scans of 𝑐$'(
and 𝑐%&.

• Slight deviation in the profiled plot, due to 
different minimization algorithms settling 
in slightly different minima.

• Good agreement for the frozen plot.
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Linear Combination of WCs Analysis

• Confidence contours of 2D scans of linear 
combinations of 𝑐#& and 𝑐#) as defined on 
page 6 in Ref. [1].

• An example showing that the trained DNN 
is easily reusable for reparameterizations 
of the 16D WC space by adding a non-
trainable linear layer, without retraining.

14[1]: https://doi.org/10.1007/JHEP03(2021)095
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DNN Advantages and Limitations
• Evaluation speed up

• 5 orders of magnitude of speed up on the profiled NLL, which can be really useful
depending on the use case.

• Portability
• The DNN is small (megabytes) and portable across software environments.

• Limitations
• The DNN is an approximation.
• It does not retain information about the systematic uncertainties encoded by the 

NPs.
• Needs an initial investment of ~50 M NLL evaluations with NPs profiled away and a 

few hours training on one GPU.
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Conclusion
• We have a trained DNN that approximates the profiled LF with high accuracy.
• The trained DNN is easily reusable for reparameterizations of the WC space.

• For use cases that do not require
• exact NLL values,
• the systematic uncertainties encoded by the NPs, 

• an initial investment of sampling the profiled ΔNLL and training the DNN yields 
• a differentiable, fast, and portable approximation of the profiled ΔNLL of our analysis
• to share with the community without losing information about any of the WCs.
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Hyperparameter Tuning
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Hyperparameter Considered Best trial

Nodes 500-2000 700

Layers 2-4 2

Minibatch size 512, 1024 512

Epochs 500 500

Activation function SELU, ReLU ReLU

Loss function Huber Loss, MSE MSE

Optimizer SGD, ADAM ADAM

Initial learning rate 10-3, 10-4, 10-5, 10-6 10-4

Learning rate reduction factor 0.2 0.2

Learning rate reduction 
patience

5-25 20

Learning rate reduction 
threshold

10-6 10-6



DNN Validation

• 1D scans of 𝑐$'( .
• Slight deviation in the bottom right plot 

(profiled, zoomed-in).
• Good agreement for the rest.
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DNN Validation

• Confidence contours of 2D scans of 𝑐#&
and 𝑐#).

• Slight deviation in the profiled plot.
• Good agreement for the frozen plot.
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DNN Validation

• Confidence contours of 2D scans of 𝑐$'*
and 𝑐#+.

• Slight deviation in the profiled plot.
• Good agreement for the frozen plot.
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Profiling in PyTorch [3]
• Use the same optimization tools as DNN training, but instead on the inputs (WCs) of the 

DNN to minimize the output (NLL).
• Use torch.autograd on the trained NN.

• Minimizes sum(ln(ΔNLL + constant)) to
• profile many points in the input space at once, taking advantage of GPU 

acceleration.
• give more weight to smaller NLLs.

22[3]: https://doi.org/10.48550/arXiv.1912.01703

https://doi.org/10.48550/arXiv.1912.01703
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