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The modern Particle Imaging Detector

LArTPC are at the center stage                 
of beam 𝜈 physics in the US

Short Baseline Neutrino program
● μBooNE, ICARUS, SBND

DUNE long-baseline experiment
● Wire: DUNE FD
● Pixel: DUNE ND-LAr

Advantages:
● Detailed: O(1) mm resolution, 

precise calorimetry
● Scalable: Up to tens of kt

ML-based Reconstruction for Imaging Detectors, F. Drielsma (SLAC)
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Case study: ICARUS Simulation

Realistic BNB νμ + Cosmic ICARUS simulation as a benchmark
● One νμ + Ar interaction/image
● ~25 cosmic interactions/image

ML-based Reconstruction for Imaging Detectors, F. Drielsma (SLAC)

– TPC boundaries
Color: particle instance ID

ICARUS simulation
νμ
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Challenges with LAr

Dense medium → Slow

Electron drift velocity O(1) mm/μs
● Long (O(1) ms) readout window
● Need light association for timing

ML-based Reconstruction for Imaging Detectors, F. Drielsma (SLAC)

High Z material → Messy  

Argon has a large nucleus (Z=18)
● Complicated nuclear physics
● Secondary interactions

ICARUS simulation

νμ

μ-

νμ(4 GeV) + Ar → Λ K0
L μ- π+ π0 π0

ICARUS simulation

Primary Secondary
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Hierarchical feature extraction

What is relevant to pattern recognition in a detailed interaction image?

ML-based Reconstruction for Imaging Detectors, F. Drielsma (SLAC)
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Hierarchical feature extraction

What is relevant to pattern recognition in a detailed interaction image?
1. Separate topologically distinguishable types of activity

ML-based Reconstruction for Imaging Detectors, F. Drielsma (SLAC)
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Hierarchical feature extraction

What is relevant to pattern recognition in a detailed interaction image?
1. Separate topologically distinguishable types of activity
2. Identify important points (vertex, start points, end points)

ML-based Reconstruction for Imaging Detectors, F. Drielsma (SLAC)
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Hierarchical feature extraction

What is relevant to pattern recognition in a detailed interaction image?
1. Separate topologically distinguishable types of activity
2. Identify important points (vertex, start points, end points)
3. Cluster individual particles (tracks and full showers)

ML-based Reconstruction for Imaging Detectors, F. Drielsma (SLAC)
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Hierarchical feature extraction

What is relevant to pattern recognition in a detailed interaction image?
1. Separate topologically distinguishable types of activity
2. Identify important points (vertex, start points, end points)
3. Cluster individual particles (tracks and full showers)
4. Cluster interactions, identify particle properties in context

ML-based Reconstruction for Imaging Detectors, F. Drielsma (SLAC)
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Hierarchical feature extraction

What is relevant to pattern recognition in a detailed interaction image?
1. Separate topologically distinguishable types of activity
2. Identify important points (vertex, start points, end points)
3. Cluster individual particles (tracks and full showers)
4. Cluster interactions, identify particle properties in context

ML-based Reconstruction for Imaging Detectors, F. Drielsma (SLAC)
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Pixel-Level Feature Extraction
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Backbone

UResNet (UNet + ResNet + Sparse Conv.) as the backbone feature extractor

ML-based Reconstruction for Imaging Detectors, F. Drielsma (SLAC)

Input Features

Paper: PhysRevD.102.012005

https://arxiv.org/pdf/1505.04597.pdf
https://arxiv.org/pdf/1505.04597.pdf
https://github.com/NVIDIA/MinkowskiEngine
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.012005


Tomographic Reconstruction
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Ghost buster

In a wire TPC, we do not get 3D images, but rather 3 x 2D projections
● Find valid combinations of 2D hits: legitimate + artifacts (ghosts)
● Classify artificial space points as such: ghost removal

ML-based Reconstruction for Imaging Detectors, F. Drielsma (SLAC)
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Semantic Segmentation
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Particle voxel class classification

Separate topologically different types of activity
● Tracks, Showers, delta rays, Michel electrons,  low energy blips

ML-based Reconstruction for Imaging Detectors, F. Drielsma (SLAC)
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Point Proposal Network (PPN)
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Points of interest

Narrow down a region proposal all the way to a point 
● Predict masks at different scales with UResNet, predict position in voxel

ML-based Reconstruction for Imaging Detectors, F. Drielsma (SLAC)
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.032004
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15

Spatial embedding transformation 

ML-based Reconstruction for Imaging Detectors, F. Drielsma (SLAC)

Transform coordinates to an space in which tracks are spatially separated
● Cluster track/shower fragments at this stage
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https://arxiv.org/abs/2007.03083


Particle-Level Aggregation
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Graph Particle Aggregator (GrapPA)

Graph Neural Network: fragments/particles (nodes), correlations (edges)

ML-based Reconstruction for Imaging Detectors, F. Drielsma (SLAC)

Paper: PhysRevD.104.072004

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004


Aggregation
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Graph edge classification

Two aggregation steps: fragments → particles → interactions
● Select edges in the graph that minimize loss, find connected components

ML-based Reconstruction for Imaging Detectors, F. Drielsma (SLAC)
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Graph edge classification

Two aggregation steps: fragments → particles → interactions
● Select edges in the graph that minimize loss, find connected components

ML-based Reconstruction for Imaging Detectors, F. Drielsma (SLAC)
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Particle Identification
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Graph node classification

Particle species much easier to infer in context
● Michel decays, secondary hadrons, shower conversion gaps, etc.

ML-based Reconstruction for Imaging Detectors, F. Drielsma (SLAC)

BNB νμ  primaries only
Photon
Electron
Muon
Pion
Proton

ICARUS simulation
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Takeaways

End-to-end ML-based reconstruction chain mature and functional
● UResNet for pixel feature extraction, GrapPA for superstructure formation
● Used on ICARUS sim./data and DUNE-ND (high neutrino pileup) sim. today 
● Check out this ICARUS interactive reconstructed event !

ML-based Reconstruction for Imaging Detectors, F. Drielsma (SLAC)

Paper: arXiv:2102.01033

https://web.stanford.edu/~drielsma/event_icarus_full.html
https://arxiv.org/abs/2102.01033
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Case study: Detector

The largest LArTPC in operation is ICARUS
● Surface-level detector
● 500 t fiducial mass (2 cryos, 4 TPCs)
● Physics: sterile neutrinos (MiniBooNE / 

Neutrino-4), cross sections, BSM

Event rates
● BNB beam: ~ 0.03 Hz neutrinos
● NuMI off-axis: ~ 0.015 Hz neutrinos
● In-time cosmic activity: ~ 0.25 Hz

Low-rate neutrino experiment with a 
significant cosmic background
ML-based Reconstruction for Imaging Detectors, F. Drielsma (SLAC)



Point Proposal Network
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Architecture

The Point Proposal Network 
(PPN) uses decoder features:
• Three CCN layers to 

progressively narrow ROI
• Last layer reconstructs:

• Relative position to 
voxel center of active 
voxel

• Point type
• Post-processing 

aggregates nearby points

ML-based Reconstruction for Imaging Detectors, F. Drielsma (SLAC)

Paper: PhysRevD.104.032004

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.032004


Graph-SPICE
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Architecture

ML-based Reconstruction for Imaging Detectors, F. Drielsma (SLAC)



GrapPA Aggregation Method
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Edge selection procedure

What the network gives you:
● Likelihood that an edge connects two objects in the same group

Target:
● Find the optimal partition

Method:
● Iteratively add the most likely edge to optimize CE loss

ML-based Reconstruction for Imaging Detectors, F. Drielsma (SLAC)

Paper: PhysRevD.104.072004

https://journals.aps.org/prd/abstract/10.1103/PhysRevD.104.072004


Particle Identification

26

Graph node classification

Particle species much easier to infer in context
● Michel decays, secondary hadrons, shower conversion gaps, etc.

ML-based Reconstruction for Imaging Detectors, F. Drielsma (SLAC)

Generic dataset (particle bombs)

ICARUS simulation
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Primary Identification
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Graph node classification

Important to know which particle originate from the vertex
● Central to any exclusive analysis (study specific channels)

ML-based Reconstruction for Imaging Detectors, F. Drielsma (SLAC)

ICARUS simulation

Secondary
Primary

1μ2p1π0

BNB νμ  primaries only

Accuracy: 89%


