End-to-end, ML-based Reconstruction Chain for Particle Imaging Detectors

CHEP 2023, Norfolk, Virginia

François Drielsma, SLAC

Liquid Argon Time-Projection Chambers

The modern Particle Imaging Detector

ML-based Reconstruction for Imaging Detectors, F. Drielsma (SLAC)

LArTPC are at the center stage of **beam** *v* **physics** in the US

Short Baseline Neutrino program

• µBooNE, ICARUS, SBND

DUNE long-baseline experiment

- Wire: DUNE FD
- Pixel: DUNE ND-LAr

Advantages:

- **Detailed:** O(1) mm resolution, precise calorimetry
- Scalable: Up to tens of kt

Liquid Argon Time-Projection Chambers

Case study: ICARUS Simulation

Realistic **BNB** v_u + **Cosmic** ICARUS simulation as a **benchmark**

- **One v**_u + Ar interaction/image
- ~25 cosmic interactions/image

- TPC boundaries

Challenges with LAr

Dense medium \rightarrow Slow

Electron drift velocity $O(1) \text{ mm/}\mu\text{s}$

- Long (O(1) ms) readout window
- Need light association for timing

$\textbf{High Z material} \rightarrow \textbf{Messy}$

Argon has a large nucleus (Z=18)

- Complicated nuclear physics
- Secondary interactions

Reconstruction in LArTPCs

Hierarchical feature extraction

Reconstruction in LArTPCs

Hierarchical feature extraction

What is relevant to pattern recognition in a detailed interaction image?

1. Separate topologically distinguishable types of activity

Hierarchical feature extraction

- 1. Separate topologically distinguishable types of activity
- 2. Identify **important points** (vertex, start points, end points)

Hierarchical feature extraction

- 1. Separate topologically distinguishable types of activity
- 2. Identify **important points** (vertex, start points, end points)
- 3. Cluster individual particles (tracks and full showers)

Hierarchical feature extraction

- 1. Separate topologically distinguishable types of activity
- 2. Identify important points (vertex, start points, end points)
- 3. Cluster individual particles (tracks and full showers)
- 4. Cluster interactions, identify particle properties in context

4.

Reconstruction in LArTPCs

Hierarchical feature extraction

What is relevant to pattern recognition in a detailed interaction image?

- Separate topologically distinguishable types of activity 1.
- Identify **important points** (vertex, start points, end points) 2.
- Cluster individual particles (tracks and full showers) 3.
- Cluster interactions, identify particle properties in context

 \rightarrow Pixel-level

 \rightarrow Cluster-level

Pixel-Level Feature Extraction

Backbone

UResNet (<u>UNet</u> + <u>ResNet</u> + <u>Sparse Conv.</u>) as the **backbone feature extractor**

Ghost buster

In a **wire TPC**, we do not get 3D images, but rather 3 x 2D projections

- Find valid combinations of 2D hits: legitimate + artifacts (ghosts)
- Classify artificial space points as such: ghost removal

ML-based Reconstruction for Imaging Detectors, F. Drielsma (SLAC)

0.8

0.6

0.4

0.2

Particle voxel class classification

Separate topologically different types of activity

• Tracks, Showers, delta rays, Michel electrons, low energy blips

Points of interest Narrow down a region proposal all the way to a point

Predict masks at different scales with UResNet, predict position in voxel

Point Proposal Network (PPN)

Dense Fragment Formation

Spatial embedding transformation

Transform coordinates to an space in which tracks are spatially separated

• Cluster track/shower fragments at this stage

Particle-Level Aggregation

Graph Particle Aggregator (GrapPA)

Graph Neural Network: fragments/particles (nodes), correlations (edges)

Aggregation

SLAC NATIONAL ACCELERATOR LABORATORY

Graph edge classification

Two aggregation steps: fragments \rightarrow particles \rightarrow interactions

• Select edges in the graph that minimize loss, find connected components

Aggregation

SLAC NATIONAL ACCELERATOR LABORATORY

Graph edge classification

Two aggregation steps: fragments \rightarrow particles \rightarrow interactions

• Select edges in the graph that minimize loss, find connected components

Graph node classification

Particle species much easier to infer in context

• Michel decays, secondary hadrons, shower conversion gaps, etc.

Takeaways

End-to-end ML-based reconstruction chain mature and functional

- UResNet for pixel feature extraction, GrapPA for superstructure formation
- Used on ICARUS sim./data and DUNE-ND (high neutrino pileup) sim. today
- Check out this ICARUS interactive reconstructed event !

Backup Slides

Liquid Argon Time-Projection Chambers

Case study: Detector

The largest LArTPC in operation is ICARUS

- Surface-level detector
- **500 t** fiducial mass (2 cryos, 4 TPCs)
- Physics: sterile neutrinos (MiniBooNE / Neutrino-4), cross sections, BSM

Event rates

- BNB beam: ~ 0.03 Hz neutrinos
- NuMI off-axis: ~ 0.015 Hz neutrinos
- In-time cosmic activity: ~ 0.25 Hz

Low-rate neutrino experiment with a significant cosmic background

Point Proposal Network

Architecture

The Point Proposal Network (PPN) uses decoder features:

- Three CCN layers to progressively narrow ROI
- Last layer reconstructs:
 - Relative position to voxel center of active voxel
 - Point type
- Post-processing aggregates nearby points

Graph-SPICE

Architecture

Edge selection procedure

What the network gives you:

- Likelihood that an edge connects two objects in the same group Target:
 - Find the optimal partition

Method:

• Iteratively add the most likely edge to optimize CE loss

ML-based Reconstruction for Imaging Detectors, F. Drielsma (SLAC)

Graph node classification

Particle species much easier to infer in context

• Michel decays, secondary hadrons, shower conversion gaps, etc.

Graph node classification

Important to know which particle originate from the vertex

• Central to any exclusive analysis (study specific channels)

BNB v_{μ} primaries only

