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 Super Tau Charm Facility

 DIRC-like Time-of-flight Detector

 PID Based on Convolutional Neural Network 

 PID Based on Quantum Convolutional Neural Network 

 Summary



The Super Tau Charm Facility (STCF) proposed in China is a new-
generation of electron positron collider 

• The peak luminosity above 0.5×1035 cm−2s−1

• Center-of-mass energies covering 2-7 GeV
• Potential for further upgrading to improve the peak luminosity and realize beam 

polarization in the future 

 Rich physics with c quark and � leptons

 Important playground for the study of QCD, hadron physics

 Search for new physics beyond the Standard Model

Broad physics at tau-charm energy region
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From the interaction point outward, the STCF detector consists of a tracking 
system (ITK and MDC), a particle identification (PID) system, an 
electromagnetic calorimeter (EMC), a superconducting solenoid and a muon 
detector (MUD).

STCF Conceptual Design Report: Volume 1 -- 
Physics & Detector. arXiv 
preprintarXiv:2303.15790, 2023.



The PID is one of the most fundamental tools in various physics studies. The PID for the full momentum 
range is essential for charm physics studies and fragmentation function studies.
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 The identification of hadrons in the low momentum range is achieved through measurements of the specific energy loss 

rate (dE/dx) in the MDC. 

 The identification of leptons and neutral particles is achieved by the EMC and the MUD. 

 To enhance PID and charged hadrons in the high momentum range, the PID system of the STCF  is designed 

The PID system uses two different Cherenkov detector technologies:

• A ringing imaging Cherenkov detector (RICH) in the barrel 

• A time-of-flight detector based on the detection of the internal total-reflected 

Cherenkov light (DTOF) in the endcap

To achieve a 3σ separation between kaons and pions with a momentum up to 4 GeV/c.



DIRC-like Time-of-flight Detector (DTOF)
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The DTOF consists of two identical endcap discs positioned at ~±1400 mm away from the collision point along the 
beam direction. Each disc is made up of several quadrantal sectors, with an inner radius of ~560 mm and an outer 
radius of ~1050 mm.

• Covering in polar angles of ∼ 22◦ − 36◦

• Synthetic fused silica radiator

• Photoelectric detection: multi-anode PMT

Schematic layout of the STCF detector concept
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Building likelihood probability density function based on reconstructed TOF distribution

Qi, B et al., DIRC-like time-of-flight detector for the experiment at the 
Super Tau-Charm Facility. Journal of Instrumentation, 16(08), P08021.



The image-like data represents the topologies of Cherenkov photons generated 
by different particles
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The likelihood method 

To exploit the PID performance of DTOF, we developed a convolutional neural network (CNN) for pions/kaons 
identification, which utilizes both timing and spatial information of the hits and takes two-dimensional pixel maps 
as the input of the CNN.

 Utilizes the timing information of different particle hypotheses

 But ignores spatial information differences (topology of photons)

• X-axis: the hit position of Cherenkov photon collected by PMT   
• Y-axis: the arrival time of Cherenkov photon collected by PMT   
• Value:  the number of photons within in this bin

The pixel map of photons:



convolution

k   pi

single event

CNN consists of interlaced convolutional layers and pooling layers, and ends with a fully connected layer.

 The primary purpose of the convolution layer is to extract new hidden features using convolution kernels 

 The pooling layer is used to reduce the dimension of data, reducing the resources required for learning and avoiding overfitting

 The full connection layer adopts softmax full connection, and the activation value obtained is the picture feature extracted by 

convolutional neural network.
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 pi+ : pi- : k+ : k- = 1 : 1 :1: 1

 0.6 Gev/c < p < 2.4 Gev/c

 23° < theta < 35°

 N_photons > 10

Several distributions of all same Kaon- are as follows

MC sample is produced with the Offline Software of Super Tau-Charm Facility (OSCAR)

• 0 ≤ channel ≤ 868

• 5.5 ≤ time ≤ 15.5 ns

• Bin number: channel * time = 217 * 200

2D channel-time momentum(Gev/c)-theta the number of photons
9

Teng Li. Track 3: Offline Data Processing Software for the Super Tau Charm Facility. 5/9 14:45
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‣ training set: 200k
‣ validation set : 70k
‣ test set : 70k

Test set accuracy : 91.76% 

‣ Conv2D (32, (5, 5), activation=‘relu’), MaxPooling2D ((2, 2))

‣ Conv2D (32, (5, 5), activation=‘relu’), MaxPooling2D ((2, 2))

‣ Flatten(), Dense(1024,activation=‘relu’), Dense(2)

‣ learning_rate = 1e-5, batch_size = 64

The preliminary results show the CNN model has a promising performance against the pion/kaon identification.

The structure and parameters of CNN: Data set:
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The PID efficiency over different momentums and incident angles
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The PID efficiency over different momentums and incident angles
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Question: can we do better with the help of quantum machine learning?

• Quantum machine learning: under the domain of quantum computing/algorithm 
• Provide alternatives/enhancement for traditional machine learning algorithms

• Potential quantum advantage for ML problems
• It utilizes high-dimensional Hilbert space through superposition and entanglement to explore more useful 

information.
• Basic idea: use a quantum device to extract features from the origin image-like data, before feeding data into the 

CNN

• Based on the classical CNN, a quantum convolution neural network (QCNN) is developed as a proof-of-concept 
work exploring possible quantum advantages provided by quantum machine learning methods.



1. Data Encoding Circuit 
Since current quantum hardware are still limited to small quantum system, the quantum convolution layer does not apply the 

entire image map to a quantum system at once, but processes it as much as the filter size at a time.

A small region of the input image, a 2×2 square, is embedded into a quantum circuit. This is achieved with RX rotation gate 

applied to the qubits initialized in the |0> state.
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Leveraging the capabilities of the TensorFlow Quantum and Cirq Simulator platforms, we have developed a 
trainable quantum convolution layer that can replace the traditional convolution layer in CNN.

. 

http://doi.org/10.1109/ICTC49870.2020.9289439

http://doi.org/10.1109/ICTC49870.2020.9289439


2. Quantum convolutional Filter
Utilize a parameterized variational quantum circuit to take spatially-local subsections of images from a dataset as input. In our 

work, we use some entanglement gates with a parameterized phase.

3. Decoding
The decoding process gets new classical data by the measurement of the quantum states.

According to the basic principle of quantum mechanics, the expectation value for measuring the observable is deterministic.
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CXPowGate CZPowGate

The quantum convolution can be followed by further classical CNN layers

 In the standard language of CNN, this would correspond to 
a convolution with a 2×2 kernel and a stride equal to 1.



 

QCNN achieved similar performance with CNN on the same dataset
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‣ QCONV(1, (2, 2), activation=‘relu’), MaxPooling2D ((2, 2))

‣ Conv2D (16, (2, 2), activation=‘relu’), MaxPooling2D ((2, 2))

‣ Flatten(), Dense(128, activation=‘relu’), Dense(2)

‣ learning_rate = 0.0001, batch_size = 16

The 217×200 size dataset was downscaled to 32×32 size

training set: 20000
validation set : 10000
test set : 10000

The structure and parameters of QCNN:

Data set:



• Targeting at the Pion/Kaon identification problem at STCF, a CNN is developed taking the photon hit 

positions and photon arrival times as inputs

• The preliminary results show that the CNN model has a promising performance for the Pion/Kaon ID 

problem.

• To explore better performance, a quantum CNN that uses a set of trainable quantum convolutional kernels are 

developed. 

• The quantum version of CNN acheives similar performance comparing to classical CNN on small datasets. 

• Further studies are still in progress, as a proof-of-concept of using QCNN to process HEP experiment data
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