Norfolk, Virginia, USA « May 8-12, 2023

-

Computing in High Energy & Nuclear Physics

Pion/Kaon Identification at STCF DTOF Based on CNN/QCNN

Zhipeng Yao, Teng Li, Xingtao Huang
Shandong University
2023.5.8
CHEP 2023



¢ Super Tau Charm Facility
¢ DIRC-like Time-of-flight Detector

¢ PID Based on Convolutional Neural Network

¢ PID Based on Quantum Convolutional Neural Network

¢ Summary



Super Tau-Charm Facility

The Super Tau Charm Facility (STCF) proposed in China is a new- -
generation of electron positron collider

* The peak luminosity above 0.5 X 103> cm 25!
* Center-of-mass energies covering 2-7 GeV
 Potential for further upgrading to improve the peak luminosity and realize beam

polarization in the future
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STCF Conceptual Design Report: Volume 1 --
Physics & Detector. arXiv
preprintarXiv:2303.15790, 2023.

Broad physics at tau-charm energy region

» Rich physics with ¢ quark and 7 leptons

» Important playground for the study of QCD, hadron physics
» Search for new physics beyond the Standard Model

From the interaction point outward, the STCF detector consists of a tracking

system (ITK and MDC), a particle identification (PID) system, an

electromagnetic calorimeter (EMC), a superconducting solenoid and a muon

detector (MUD).
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Particle ldentification System

The PID is one of the most fundamental tools in various physics studies. The PID for the full momentum
range is essential for charm physics studies and fragmentation function studies.

» The identification of hadrons in the low momentum range is achieved through measurements of the specific energy loss
rate (dE/dx) in the MDC.

» The identification of leptons and neutral particles is achieved by the EMC and the MUD.

» To enhance PID and charged hadrons in the high momentum range, the PID system of the STCF is designed

electromagnetic  hadronic muon

PN e e The PID system uses two different Cherenkov detector technologies:
EJE_ * A ringing imaging Cherenkov detector (RICH) in the barrel
i * A time-of-flight detector based on the detection of the internal total-reflected

charged
hardon

Cherenkov light (DTOF) in the endcap

neutral
hadron

To achieve a 36 separation between kaons and pions with a momentum up to 4 GeV/c.

neutrino

inner layer + outer layer



DIRC-like Time-of-flight Detector (DTOF)

The DTOF consists of two identical endcap discs positioned at ~+ 1400 mm away from the collision point along the
beam direction. Each disc 1s made up of several quadrantal sectors, with an inner radius of ~560 mm and an outer

radius of ~1050 mm.

291 cm- *

* Covering in polar angles of ~ 22° — 36°

* Synthetic fused silica radiator

e Photoelectric detection: multi-anode PMT —I
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The likelithood method for PID

Building likelithood probability density function based on reconstructed TOF distribution
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Qi, B et al., DIRC-like time-of-flight detector for the experiment at the
Super Tau-Charm Facility. Journal of Instrumentation, 16(08), PO8021.




Convolutional Neural Network

The likelihood method

» Utilizes the timing information of different particle hypotheses

» But ignores spatial information differences (topology of photons)

~ The pixel map of photons:

« X-axis: the hit position of Cherenkov photon collected by PMT
* Y-axis: the arrival time of Cherenkov photon collected by PMT
* Value: the number of photons within in this bin

- The image-like data represents the topologies of Cherenkov photons generated
by different particles

To exploit the PID performance of DTOF, we developed a convolutional neural network (CNN) for pions/kaons

identification, which utilizes both timing and spatial information of the hits and takes two-dimensional pixel maps
as the input of the CNN.



The Structure of CNN

kaon-
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CNN consists of interlaced convolutional layers and pooling layers, and ends with a fully connected layer.

® The primary purpose of the convolution layer is to extract new hidden features using convolution kernels
® The pooling layer 1s used to reduce the dimension of data, reducing the resources required for learning and avoiding overfitting

® The full connection layer adopts softmax full connection, and the activation value obtained is the picture feature extracted by

convolutional neural network.



Data Sample

MC sample is produced with the Offline Software of Super Tau-Charm Facility (OSCAR)

Teng Li. Track 3: Offline Data Processing Software for the Super Tau Charm Facility. 5/9 14:45
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> 0.6 Gev/c <p <2.4 Gev/c * 0 <channel < 868
> 23° < theta < 35° ° 5.5<time<15.5ns

> N _photons > 10  Bin number: channel * time =217 * 200

Several distributions of all same Kaon- are as follows
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The Performance of CNN

The structure and parameters of CNN: Data set:
P Conv2D (32, (5, 5), activation=‘relu’), MaxPooling2D ((2, 2)) > training set: 200k
P Conv2D (32, (5, 5), activation=‘relu’), MaxPooling2D ((2, 2)) > validation set : 70k
P Flatten(), Dense(1024,activation=‘relu’), Dense(2) » testset: 70k
P learning rate = le-5, batch_size = 64 Test set accuracy : 91.76%
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The preliminary results show the CNN model has a promising performance against the pion/kaon identification.
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The Performance of CNN

The PID efficiency over different momentums and incident angles
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The Performance of CNN

The PID efficiency over different momentums and incident angles

kaon_p_theta_Efficiency by CNN
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Quantum Machine Learning

Question: can we do better with the help of quantum machine learning?

Quantum machine learning: under the domain of quantum computing/algorithm
* Provide alternatives/enhancement for traditional machine learning algorithms
Potential quantum advantage for ML problems
It utilizes high-dimensional Hilbert space through superposition and entanglement to explore more useful
information.

Basic idea: use a quantum device to extract features from the origin image-like data, before feeding data into the
CNN

Based on the classical CNN, a quantum convolution neural network (QCNN) 1s developed as a proof-of-concept

work exploring possible quantum advantages provided by quantum machine learning methods.
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Quantum Convolutional Neural Network

Leveraging the capabilities of the TensorFlow Quantum and Cirq Simulator platforms, we have developed a
trainable quantum convolution layer that can replace the traditional convolution layer in CNN.

1. Data Encoding Circuit

Since current quantum hardware are still limited to small quantum system, the quantum convolution layer does not apply the
entire image map to a quantum system at once, but processes it as much as the filter size at a time.

A small region of the input image, a 2X2 square, 1s embedded into a quantum circuit. This is achieved with RX rotation gate

applied to the qubits initialized in the |0> state.

0 0

B N B cos; —ising
RX(0) = exp (—zEX) - (_isin% cos § )

http.//doi.org/10.1109/ICTC49870.2020.9289439

Decoding

quantum circuit

Quantum Device
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Quantum Convolutional Neural Network

2. Quantum convolutional Filter
Utilize a parameterized variational quantum circuit to take spatially-local subsections of images from a dataset as input. In our

work, we use some entanglement gates with a parameterized phase.

|
h A
CXPowGate CZPowGate :
|
1 0 0 0 1 0 0 0] |
01 0 0 0 1L 0 0 :
0 0 g —igs 0 0 1 0 :
0 0 —igs gc 0 0 0 ¢ |

In the standard language of CNN, this would correspond to

3. Decoding a convolution with a 2x 2 kernel and a stride equal to 1.

The decoding process gets new classical data by the measurement of the quantum states.

According to the basic principle of quantum mechanics, the expectation value for measuring the observable is deterministic.

f(0) = <'¢| wi(0)OW (9) |1ﬁ> The quantum convolution can be followed by further classical CNN layers
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Performance of QCNN

The 217x 200 size dataset was downscaled to 32%32 size
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QCNN achieved similar performance with CNN on the same dataset



Summary

Targeting at the Pion/Kaon identification problem at STCF, a CNN 1is developed taking the photon hit

positions and photon arrival times as inputs

The preliminary results show that the CNN model has a promising performance for the Pion/Kaon ID

problem.

To explore better performance, a quantum CNN that uses a set of trainable quantum convolutional kernels are

developed.

The quantum version of CNN acheives similar performance comparing to classical CNN on small datasets.

Further studies are still in progress, as a proof-of-concept of using QCNN to process HEP experiment data
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