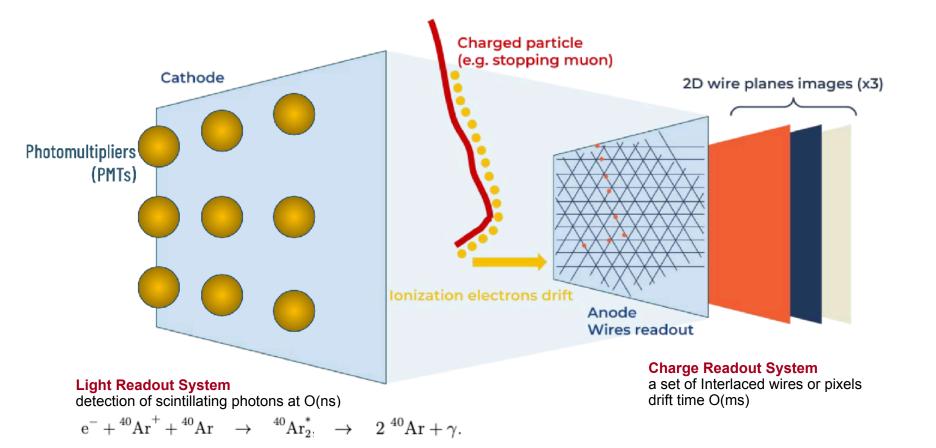
Implicit Neural Representation as a Differentiable Surrogate for Photon Propagation in a Monolithic Neutrino Detector

Patrick TSANG (SLAC) for DUNE Collaboration

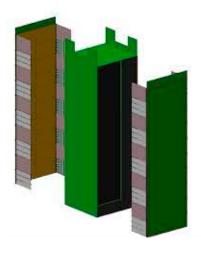
CHEP 2023

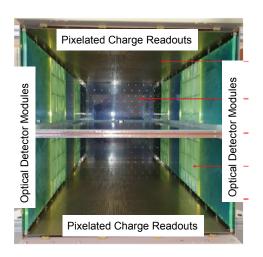
Liquid Argon Time Projection Chamber (LArTPC)



Drift distance = Drift Velocity * (t - t₀)

Examples of LArTPC Detectors





Module-0 Demonstrator

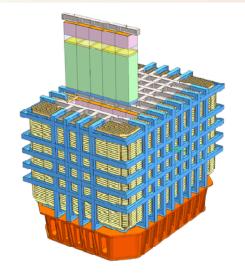
- 1st ton-scale prototype of DUNE* near detector design
- $\sim 0.7 \text{ m} \times 0.7 \text{ m} \times 1.4 \text{ m}$
- divided into 2 TPCs
- pixelated charge readout
- 2 different optical detector prototypes: LCM & ArcLight

ICARUS**

- largest LArTPC in operation with wire readout
- 760 ton LAr in 2 TPCs
- each ~3.6 m x 3.9 m x 19.9 m

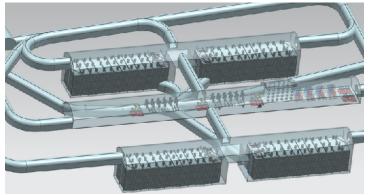
*DUNE: Deep Underground Neutrino Experiment
**ICARUS: Imaging Cosmic And Rare Underground Signals

Proposed LArTPC Detectors



DUNE Near Detector-Liquid Argon (ND-LAr)

- 7x5 array of 1 m x 1m x 3m detector modules (similar design as module-0 demonstrator)
- ~67 ton of LAr

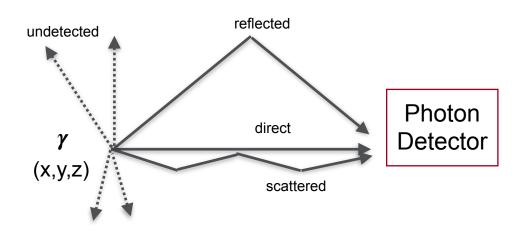


DUNE Far Detector

- 4 x ~17-kton detector modules
- each ~19 m x 18 m x 66 m

Scalability is the key for the future

Scintillation Light Propagation Model Lookup Table (LUT) Approach



Visibility Lookup Table

- divide the detector volume into voxels of ~cm in size
- for each voxel, simulate and propagate millions of photons
- count the number of detected photons
- visibility at (x,y,z) = # detected photons / # generated photons
 - Limited by memory usage
 - Not scalable for large detector
 - Simulation-based, difficult to calibrate

Sinusoidal Representation Network (SIREN)

SLAC

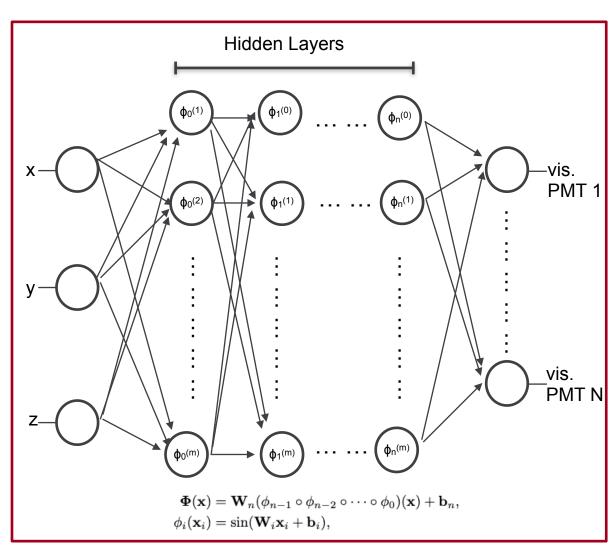
Implicit Neural Representation

Parameterize signals as <u>continuous</u> functions via <u>neural networks</u>, which are trained to map the domain the signal (e.g. spatial coordinates) to the target outputs (e.g. signal at those coordinates).

 $f: R^M \rightarrow R^N$

SIREN

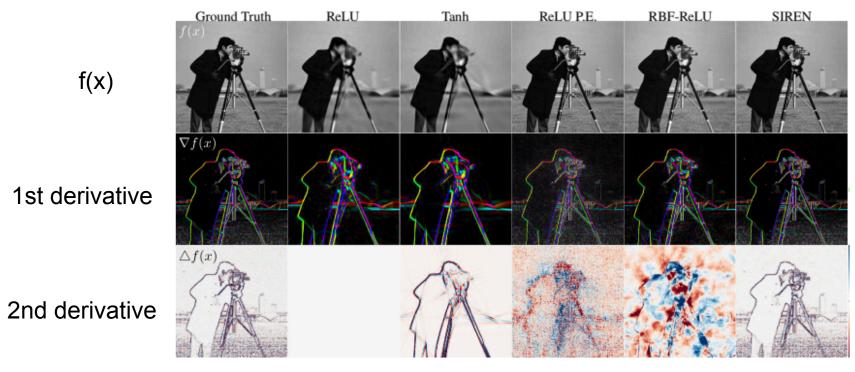
a simple multilayer perceptron (MLP) network architecture along with periodic <u>sine</u> function activations (Sitzmann et al., <u>arXiv:2006.09661</u>)



Why SIREN?

By construction, SIREN is a continuous, differentiable signal representations

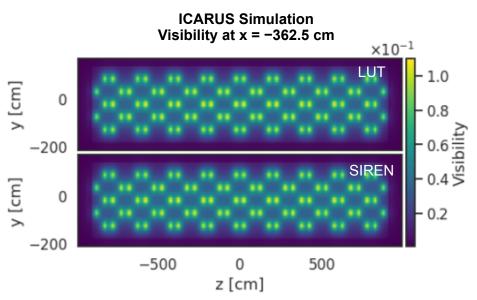
- => modeling signals with fine detail, AND
- => representing smooth gradient surface (and higher order of derivatives)



SIREN (<u>arXiv:2006.09661</u>)

Allows wide range of applications from gradient-based algorithms, solving differential equation, optimizing on the derivative ... etc

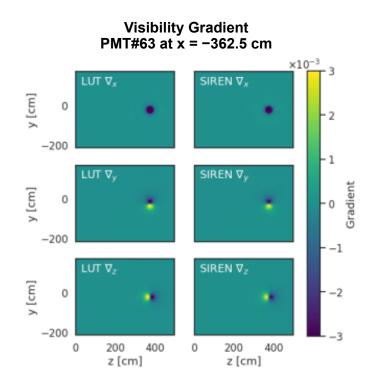
Visibility: SIREN v.s. LUT



- $-74 \times 77 \times 394 = 2.2 \text{ M voxels (5 cm in size)}$
- 180 PMTs = \sim 404 M parameters

SIREN (bottom)

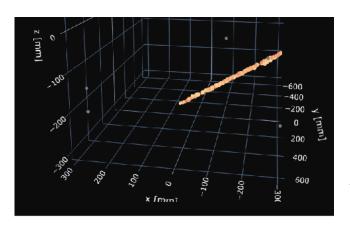
- 5 hidden layers, 512 hidden features
- ~1.5 M parameters

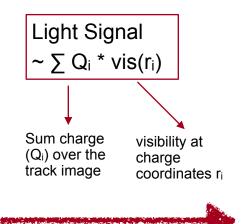


SIREN can reproduce both <u>values</u> and <u>gradients</u> of the visibility LUT with much smaller number of parameters.

Application of SIREN to Data Charge-to-Light Prediction

3D Image of an anode-cathode crossing track from charge readout



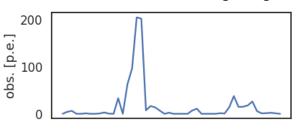


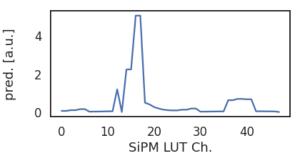
- point-like source, i.e. visibility at (x,y,z), is not accessible in data
- infer light signal from physics objects (e.g. tracks)

Optimize SIREN parameters using track data

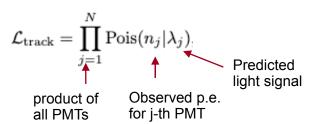
For the rest of the talk, I will show some real world applications of SIREN using cosmic rays data from <u>Module-0 Demonstrator</u>.

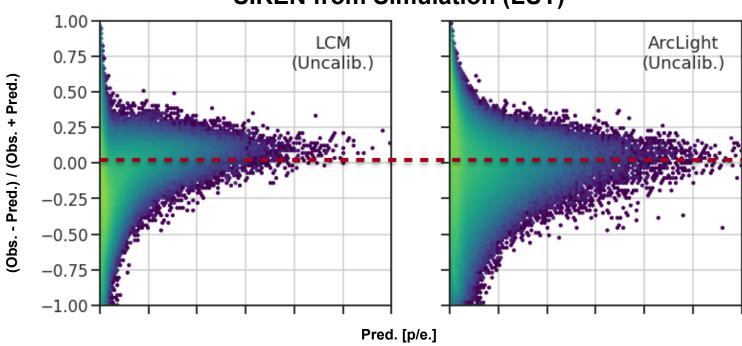
Observed and Predicted Light Signal





Poisson Likelihood



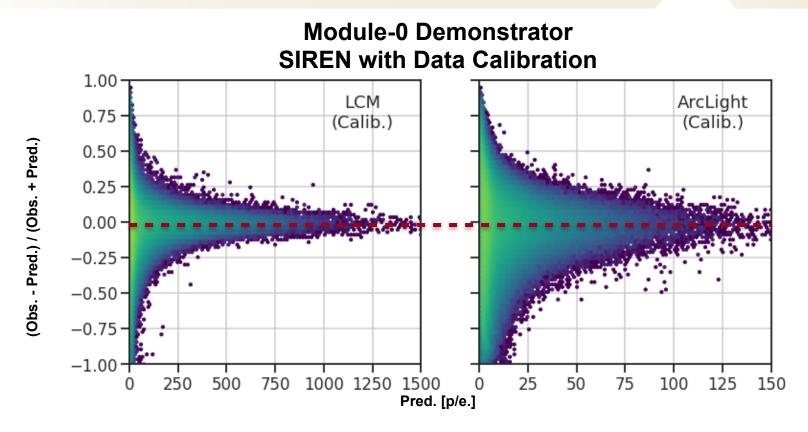


Before Calibration

- train SIREN with LUT from simulation (uncalibrated)
- ~10% discrepancy between observed and predicted light signals

Simulation is reasonable, but not perfect. Need *calibration*.

Module-0: SIREN after Calibration

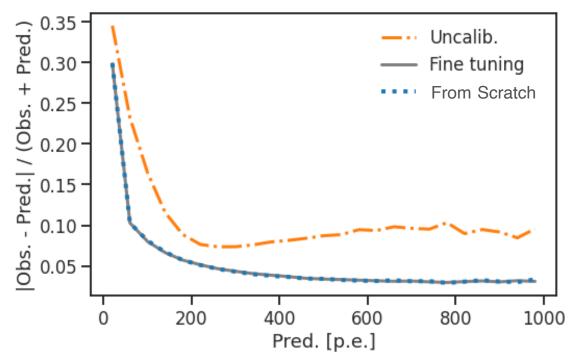


After Calibration

- re-optimize SIREN parameters with tracks
- no bias and smaller variance

SIREN can be calibrated to remove data-simulation discrepancy.

Build a SIREN Model Directly from Data



Uncalibrated

- SIREN trained from LUT (simulation)
- suffer from data-MC discrepancy

Fine Tuning

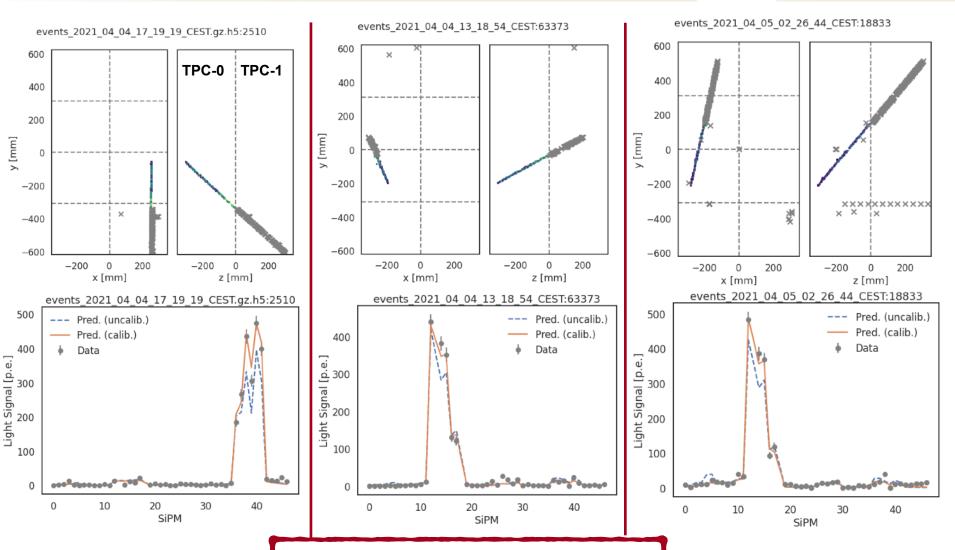
- use uncalib. SIREN model as initial parameters
- re-optimize with tracks (calibration)

From Scratch

- random initialization of SIREN parameters
- optimize with tracks

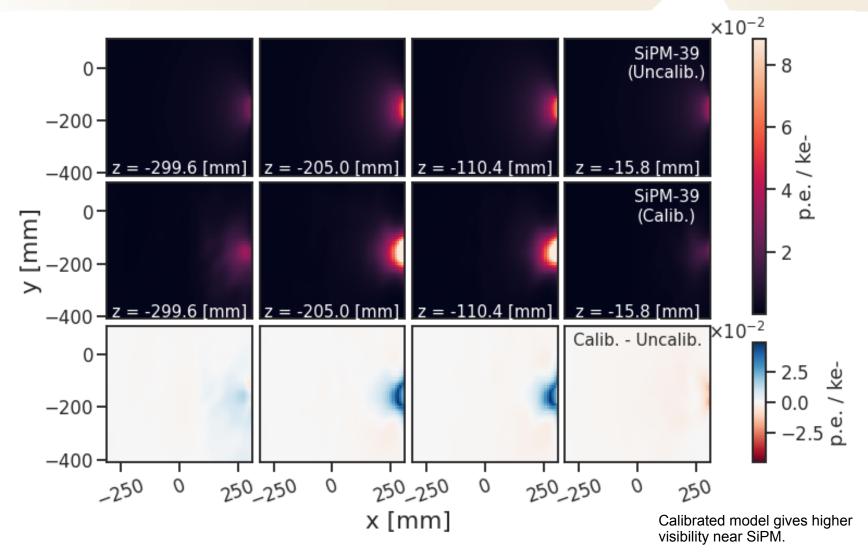
SIREN model can be constructed from data alone, without prior knowlege from simulation.

Example Events

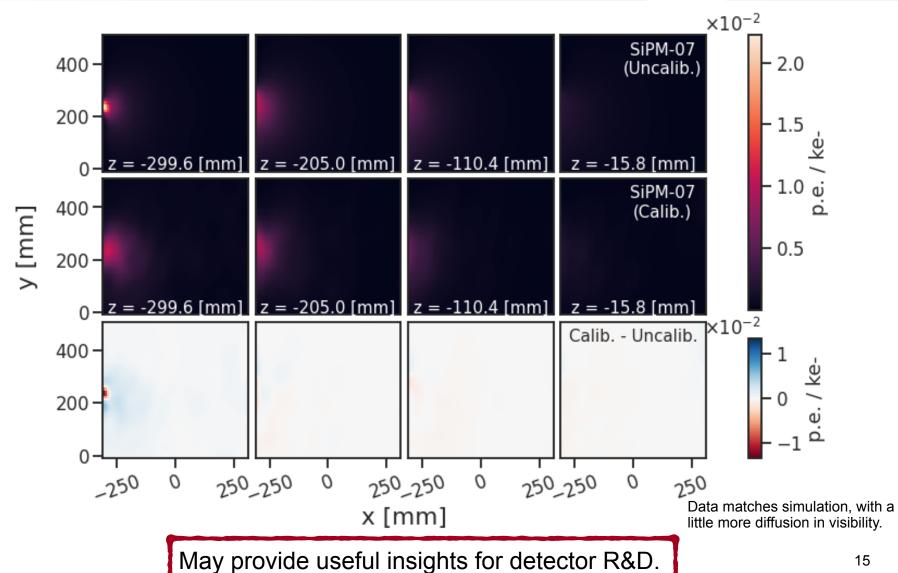


Better agreement after calibration.

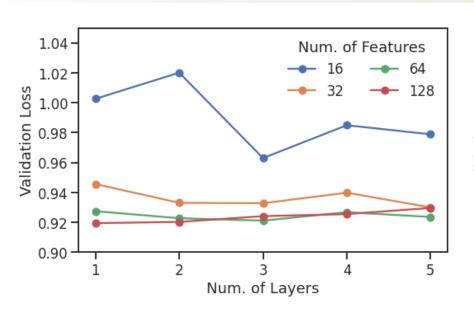
Visibility Map (LCM)

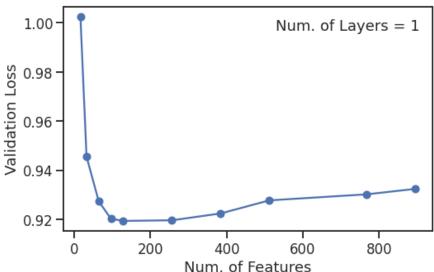


Visibility Map (ArcLight)



Hyper-Parameter Optimization

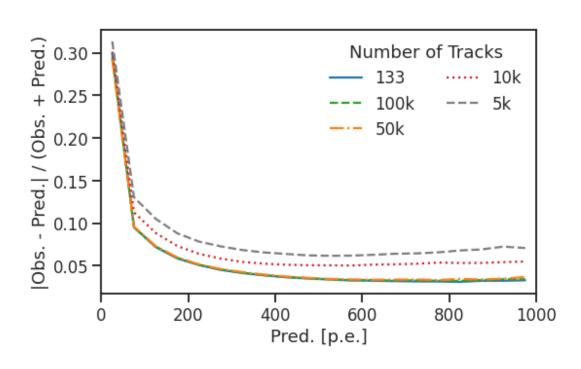




Optimal SIREN model for module-0 demonstrator

- determined by track data
- # of layers = 1
- # of features = 128
- ~23k parameters
- c.f. 12.6M for LUT in ~1 cm voxel size

How Many Tracks Needed?

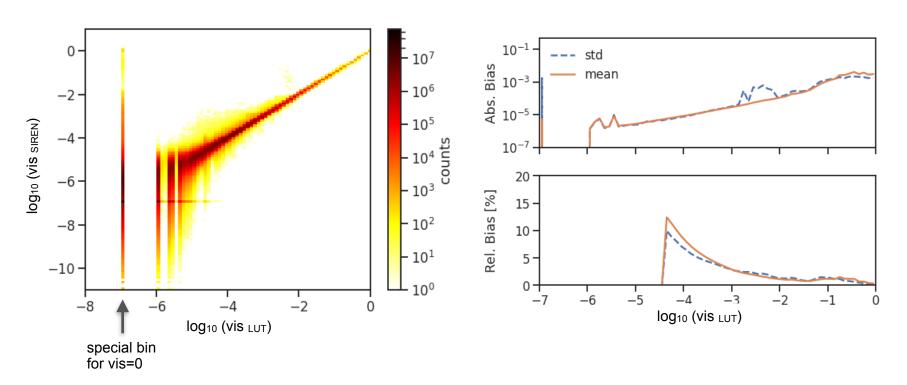


- performance increase significantly from 5k to 50k tracks
- difference diminishes to~0.1% from 50k and beyond
- ~100k tracks are good enough to build a SIREN model for Module-0 demonstrator

Conclusions

- propose the use of sinusoidal representation network (SIREN) to model the light propagation for LArTPCs
 - memory efficient => scalable for large detectors
 - optimizable w/ data => calibration
 - smooth gradient surface => further applications
- optimize a SIREN model using data from Module-0 demonstrator
 - fine-tuning from a simulation-based SIREN model,
 - or construct a SIREN model from data only.
- potential applications to other experiments (not limited to LArTPC)

Backup Slides



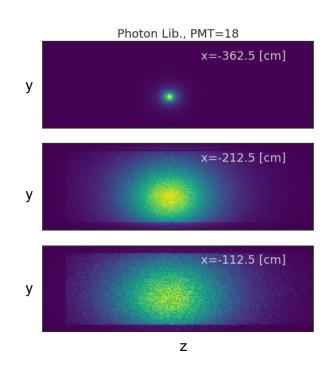
SIREN is able to represent LUT with ~1% in the high visibility region (vis. > 1e-2).

The overall (average) bias is ~7-8%, which is dominated by the *statistical fluctuation* of the LUT at low visibility.

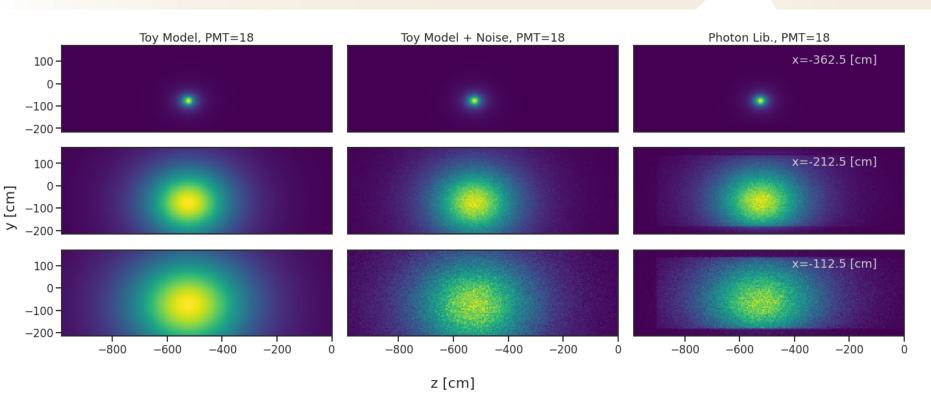
Statistical Uncertainty in LUT

Generation of the photon library is limited by *finite statistics*.

The input data to the SIREN are subjected to <u>statistical uncertainty</u> (more prominent for voxels with low visibility).



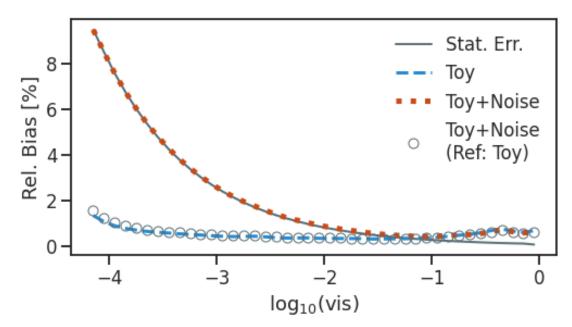
Toy Model: A Study w/ and /o Stat. Err.



Toy Model: analytical (smooth) model that roughly reassemble the features of LUT. No statistical fluctuation.

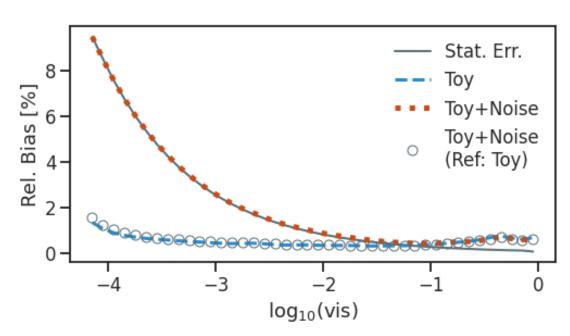
Toy Model + Noise: sampling from toy model, assuming 1e6 photons per voxel, ~same statistical uncertainty as the LUT.

SIREN Performance w/o Statistical Uncertainty



Toy Model

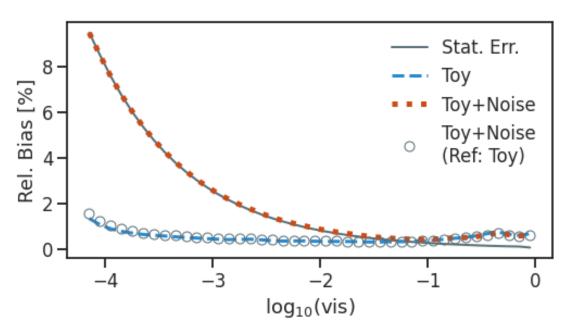
- train SIREN w/ toy model
 - NO stat. fluctuation
- compare SIREN output to the analytical model
- ≤ 1% bias
- systematic error for SIREN



Toy+Noise Model

- train SIREN w/ toy+model
 - input data *with* stat. fluctuation
- compare SIREN output to the input data
- ≤ 1% bias at high visibility values
- bias increases gradually for lower visibility
 - comparable to the expected stat. err.
- contributions from both *statistical* and *systematic*

SIREN Performance Learning the Underlying Distribution

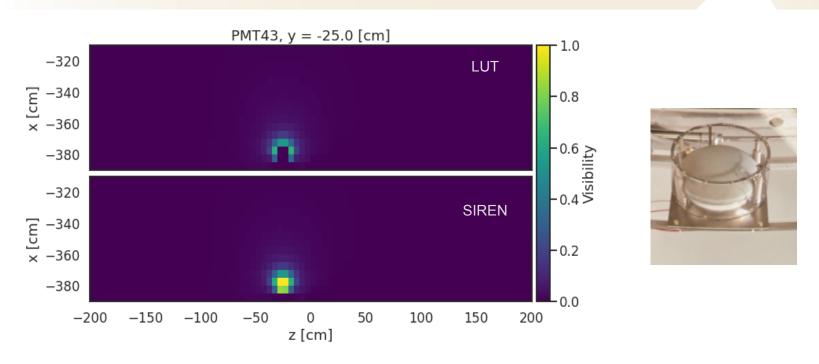


Toy+Noise Model (Ref: Toy)

- train SIREN w/ toy+model
 - input data with stat.
 fluctuation
- compare SIREN output to the analytical model (i.e. the truth distribution)
- same bias as trained with Toy Model (i.e. input data w/o stat. uncertainty)
- statistical fluctuations suppressed

SIREN is able to learn the underlying distribution at ≤ 1% level, even with the imperfect input data.

Case 1: LUT == 0, SIREN high vis.

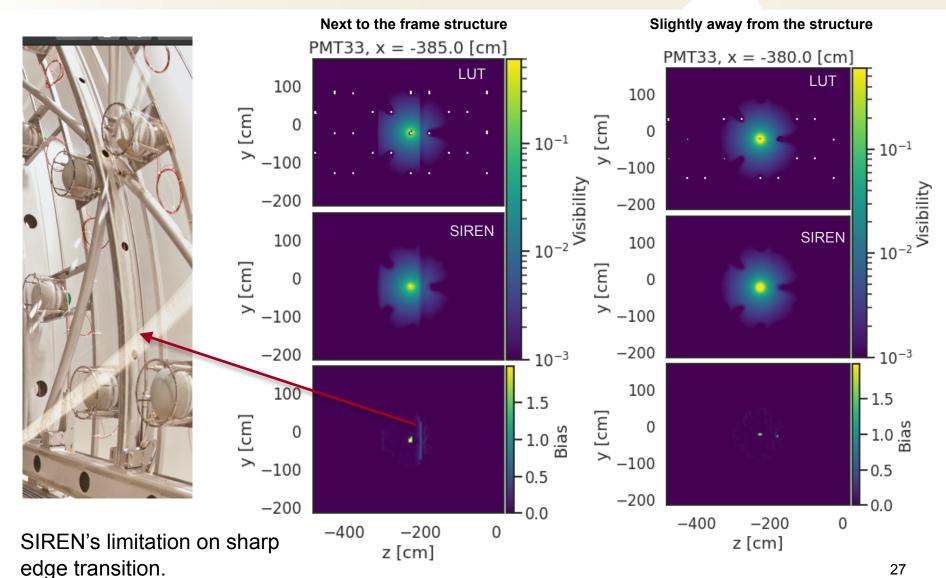


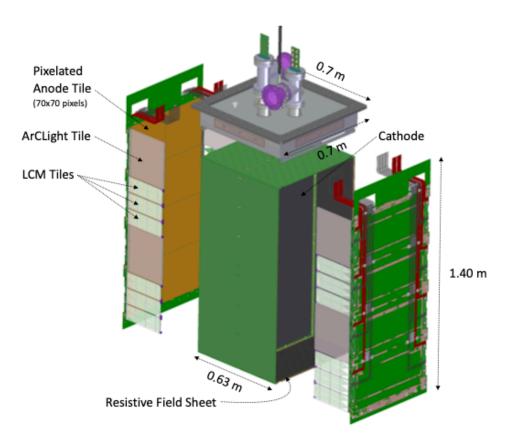
No light at the base / mount of PMT.

SIREN (as a continuous parameterization) tries to map the visibility toward max. visibility = 1.

Negligible impact on physics. It corresponds track hitting directly to the PMT, leaving NO ionization charge. Likely there is a fiducial volume in the high level analysis.

Case 2: SIREN Overpredicts Visibility





Short term goal

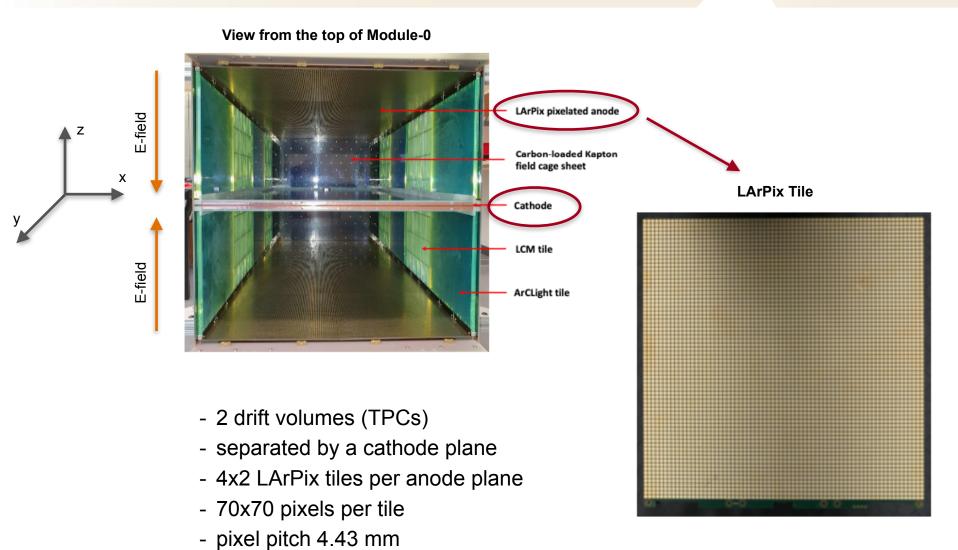
- build a prototype of 2x2 array of detector modules
- test w/ NuMI neutrino beam at Fermilab

Long term goal

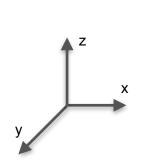
 build a 7x5 array (TBC) for the DUNE Liquid Argon Near Detector

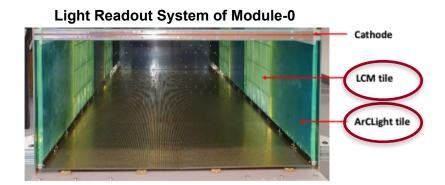
Figure 1. Schematic of the $0.7 \text{ m} \times 0.7 \text{ m} \times 1.4 \text{ m}$ Module-0 detector with annotations of the key components.

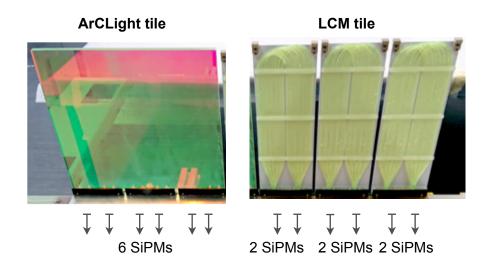
Module-0 Charge Readout System



Module-0 Light Readout System





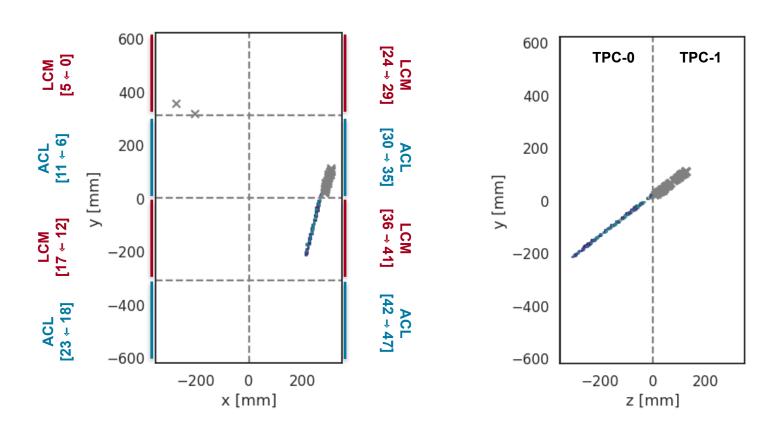


- 4 LCM and 4 ArCLight tiles per TPC
- each tiles ~300 mm x 300 mm x 10 mm
- 6 SiPMs per tile
- total of 48 SiPMs per TPC

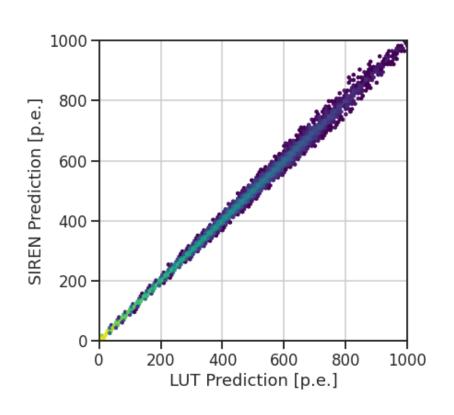
Data Selection for Module-0

- data collected between 4/4/21 4/10/21 at Bern
 - "default" settings (0.5 kV/cm, med. threshold)
- cathode-anode crossing tracks in TPC-0
 - one clustered object per charge image
 - dbscan eps=25 mm, min_samples=5
- matching charge-light pairs by trigger timestamp
- ~680k tracks selected
 - training/validation/testing samples in 75-15-15 splitting ratio
 - for track statistic study, splitting ratio is 20-80 for training/testing

Note on SiPM Indexing



- ** Grayed out points are excluded from this analysis
 - unclustered points, or
 - portion of track in TPC-1

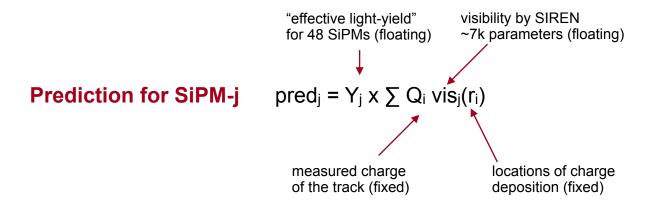


- train a SIREN model using simulated data (i.e. LUT)
- point-source input
 - $\{x_i, y_i, z_i\} \rightarrow \{vis_i^0, vis_i^1, ..., vis_i^{47}\}$
- calculate charge-to-light prediction
 - pred. ~ $\sum Q_i \text{ vis}(r_i)$
- vis(r_i): either from LUT or SIREN
- both methods are practically the same
 <1% difference

Calibration of SIREN Model

Calibration => Multi-parameters optimization problem of the SRIEN model

Objective minimize the difference between observation and prediction



Loss function chi2 =
$$\sum_i (obs_i - pred_i)^2 / (pred_i + \epsilon^2)$$
 $\epsilon = 5 \text{ p.e.}$