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01 BEPCII & BESIII
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u Beijing electron-positron collider (BEPCII) 

• Peak luminosity : 1033 cm−2 s −1

• CMS: 2.0 - 4.95 GeV, τ -charm region

• World’s largest J/ψ dataset : 10 billion

u Beijing Spectrometer (BESIII)

• Study the electroweak and strong interactions

• Search for new physics 

u Main Drift Chamber (MDC)

• 43 sense wire layers

• dE/dx resolution : 6%

• Momentum resolution : 0.5%@1GeV/c

Aerial view of the BEPCII
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01 Traditional tracking of BESIII drift chamber
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u Identify measurements to individual tracks

• Global method : Hough transform (HOUGH)

Affect by energy loss and overlapping track

• Local method : Template matching for segment (PAT)

Sensitive to wire inefficiency, layer arrangement and momentum 

Seeding and road following  (TCurlFinder)

Affect by noise or background alone the track path

u Estimate the track parameters

• Kalman filter

u Estimate charged particles properties

• Momentum and direction

• Charge

Vertex and 
physics object 
reconstruction

Track fitting

Track finding

MDC hits 
produced by 

charged particles



01 Motivation

Xiaoqian Jia                                                                                  CHEP2023                                3

u Further optimizations: Increase the tracking efficiency 

and performance for special events

• Low transverse momentum

• Large dip angle

• Secondary vertex

u New Challenge: Higher Background and noise with the upgrade of BEPCII

• Noise hit resistance

u But the optimization of the traditional tracking algorithm could be very challenging

u Goals of this study

• Explore the new tracking method with novel technologies

• GNN, DBSCAN…

• Develop experiment independent tracking with 2-D measurement (drift chamber)

for other experiments (i.e. STCF, CEPC …)

ZR view of drift chamberTrack of low transverse 
momentum(51.8 MeV) particle



02 Methodology: workflow
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02 Graph Neural Network
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u A type of neural network that are specifically designed to operate on graph-structured data

u Graph:  nodes, edges

u Graph  à Track

• Nodes à Hits 

• edges  à track segments

u GNN key idea: propagate information across the graph using a set of learnable

functions that operate on node and edge features

u Graph Neural Network edge classifier 

• High classification score

à the edge belongs to a true particle track

• Low classification score

à it is a spurious or noise edge

node

edge

G = (N, E)

GNN



02 Graph construction 
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Pattern Map based on MC simulation
To reduce the number of fake edges during graph construction
u Definition of valid neighbors

• Hits on the same layer
Two adjacent sense wires on the left and right

• Hits on the next layer
The collection of sense wires that could potentially represent two successive hits on a track

u MC sample used to build pattern map
• Two million single tracks produced with BESIII offline software  (BOSS) 
• 5 types of charged particles (e±, K± , μ±, p±, π±)
• 0.05 GeV/c < P < 3 GeV/c

u Edge assignment based on Pattern Map 
• Hit with its neighbors on the same layer and next layer
• Hit with its neighbors' neighbors on one layer apart

u To reduce the size of the graphs, the Pattern Map is further reduced based on a probability cut
u Graph representation

• Node features (raw drift time, position coordinates r, φ of the sense wires), adjacency matrices, edge labels

A wire on layer13 and tits 
neighbors on layer14
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02 GNN edge Classifier based on PyTorch
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u Input network 

• Node features embedded in latent space

u Graph model

• Edge network computes weights for edges using the features of the start and end nodes

• Node network  computes new node features using the edge weight aggregated features s of the connected 

nodes and the nodes’ current features

• MLPs

• 8 graph iterations

u Strengthen important connections and weaken useless or spurious ones



02 Performance of filtering noise
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u Dataset

• Single-particle (e±, K± , μ±, p±, π± ) MC sample

• 0.2 GeV/c < P < 3.0 GeV/c

• Mixed with BESIII random trigger data as background (~45% hits)

• Train: Validation: Test = 4: 1: 1

u Hit selection performance

• The preliminary results show that GNN provides high efficiency and purity of hits selection

• Hit selection Efficiency :  
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'()*+,-)*

!!"#$%&
./%&

• Hit selection Purity : 
!!"#$%&
'()*+,-)*

!%&&
0./1"23/1



02 Clustering of Tracks Based on DBSCAN
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a) Original MC data sample

• J/Ψ → ρ0 π0 → γ γ π+ π−

• π+, π− : Pt (0.2GeV - 1.4GeV)

b) Remove noise via GNN

c) Transform to Conformal plane

• 𝑿 = 𝟐𝒙
𝒙𝟐6𝒚𝟐

𝒀 = 𝟐𝒚
𝑿𝟐6𝒚𝟐

• Circle passing the origin transform into a straight line

d) Transform to ‘α’ parameter plane

• Hits connected in the X-Y plane in a straight line

• α as the angle between the straight line and X axis

• The parameter space as cosα and sinα

e) DBSCAN clustering in ‘α’parameter plane

• Density-Based Spatial Clustering of Application with Noise

• Hits in a cluster are considered to be in the same track

a b c d e



02 DBSCAN Performance
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u DBSCAN can achieve high clustering efficiency ( 
!!"#$%
&'()*+,()

!!"#$%
"-#. )

u An obvious bulge at the purity ( !$./0!-"
'(12

!$./0!-"
#.. ) of about 0.5

• Can not separate hits from the two very close tracks

• It accounts for about 3.5%



02 Optimizations
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Signals selected 
by GNN

DBSCAN

# signals in any 
class > threshold

RANSACEnd

# signals in any 
class > threshold

RANSAC on 
this class

Remaining 
signals

No Yes

No Yes
End

u Random sample consensus (RANCAS)

• Estimate a mathematical model from the data that contains outliers

• Its good robustness to noise and outliers

• Model can be specified

u RANCAS is triggered by the events that DBSCAN processing fails

• Polar coordinate space

• linear model (being optimized to a more suitable model for tracks)

• Inliers à a track , outliers à other tracks 

• Stop condition: outliers < threshold



02 Results after Optimizations
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u Removed bulges at purity

u Track finding efficiency

• track eff = !'(+ ,'1+34
!,5,12 ,'1+34

• Pt > 0.2 GeV/c , track eff > 90%

• Pt > 0.45 GeV/c , track eff > 98%



02 Track fitting
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u Genfit2

• A Generic Track-Fitting Toolkit

• Experiment-independent framework 

• PANDA, Belle II, FOPI and other experiments

• Deterministic annealing filter (DAF) to resolving the left-right ambiguities of wire measurements



03 Preliminary Results
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u Particle reconstructed performance

• J/Ψ → ρ0 π0 → γ γ π+ π− from MC simulation

• The preliminary results presents promising performance



04 Summary
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u A novel tracking algorithm prototype based on machine learning method at BESIII is under development

• GNN to distinguish the hit-on-track from noise hits.

• Clustering method based on DBSCAN and RANSAC to cluster hits from multiple tracks

u Preliminary results on BESIII MC data shows promising performance

Outlook
u Further optimization of the model is needed

To improve performance for low PT tracks

u Performance verification concerning events with more tracks



Thank you !
Xiaoqian Jia
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DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

u A density-based clustering algorithm that can automatically discover clusters of arbitrary 

shapes and identify noise points

u Robust to outliers

u Not require the number of clusters to be told beforehand

u Parameter 

• Epsilon (radius of the circle to be created around each data point)

• MinPoints (the minimum number of data points required inside that circle for that 

data point to be classified as a Core point)

• Choose MinPoints based on the dimensionality (≥dim+1),  and epsilon based on the 

elbow in the k-distance graph



RANSAC (Random Sample Consensus) 

u Basic idea: randomly select a subset of data points, fit a model based on these points, and then judge whether the 

remaining data points belong to the inlier set by calculating their distances to the model

u Accurately estimate model parameters even in the presence of noise and outliers

u The specific steps 

• Randomly select a small subset of data, called the inlier set

• Fit a model based on the inlier set

• Calculate the distances between the remaining data points and the model, and classify these points as inliers 

or outliers based on a certain threshold

• If the number of inliers reaches a preset threshold, the algorithm exits and the current model is considered 

good

• If the number of inliers is not enough, repeat steps 1-4 until the maximum iteration times are reached

u Parameters such as threshold and iteration times need to be preset


