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Seqguence to seguence (seg2seq).

o Machine learning model that maps an input sequence (words, symbal,...) to an output of
sequence

o Usedin:

» Natural language processing (NLP) tasks: tfranslation, summarizations, text generations (GPT-3/GPT-4)
» Image captioning

» Symbolic mathematical calculations (Integrations, solving ODEs, ...) [Lample, Charton, 2019]

o One of the most powerful model: Transformer Model
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SYMBA (Symbolic Computation of Squared Amplitudes)

We use Transformer model to compute symbolically
the square of the pariicle interaction amplitude, a
key element of a €ross section calculafion.

Abdulhakim Alnugaydan Sergei Gleyzer Harrison Prosper
PhD student Professor Professor
University of Kentucky University of Alabama  Florida State University




Sguared amplitude and cross section:
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Datasert:

= Generate 2—2 processes in all Standard Model at tfree-level and compute
their squared amplitudes using MARTY

= Generate 2—3 processes in QED and QCD aft tree-level and compute their MARTY
squared amplitudes using MARTY
Pairs of two types:
(amplitude, squared amplitude)

(Feynman diagram, squared amplitude)



Data Preparation:

Simplifying squared amplitude:

Tokenization:

« The amplitudes are tokenized by operator (tensor) and its indices
« The squared amplitudes are tokenized by each mass, product of momenta and numerical factor

« Exclude expressions longer than 264 tokens



o The model has 6 layers and 8 attention-heads, with 512 embedding dimensions

o We use sparse categorical crossentropy as the loss function, the Adam optimizer with a learning
rate of 0.0001 and a batch size of 64.

o The training was performed for 50-100 epochs on two CASCADE-NVIDIA V100 GPUs which took
about 12-24 hours.
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AcCcuracy metrics:

We assessed the accuracy of the trained model in the standard way, namely by applying the

model to a test dataset consisting of 500 amplitudes that were not used to train the model. Three
measures of accuracy were considered:

1. Sequence Accuracy:
The relative number of squared amplitudes correctly and exactly predicted.

2. Token Score:

The relative number of tokens (i.e., symbols) that were predicted correctly in the right place
in the sequence:
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Accuracy melrics{cont.):

3. Numerical Error:
Random numbers between {10, 100} are plugged into the variables (momenta) in the
squared amplitude and we compare the predicted numerical value of the squared
amplitude with the actual numerical value:

. Lact — Tpred
Numerical Error = Aoy
Zact
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Sequence

Data size

: Accuracy
R eS U | -l-S . QED (amplitude) 251K 99%
QCD (amplitude) 140K 97%
EW 2to2 (amplitude) 285K 90%
QED (diagram) 258K 99%
QCD (diagram) 142K 73%
EW 2to2(diagram) 259K 93%

Average time of inference < 2 sec




» High dependency on: sequence length and data size

Sequence accuracy %

Model performance on different sizes of QCD and QED dataset
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Improve decoding (beam search, dimensional decoding

Uncertainty
Include more theories, more final states and higher orders

Transformer for long sequence

Thank you ..
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Table 1: Amplitude-squared amplitude Model results

Training Size  Sequence Acc. Token Score RMSE
QED (sequence) 251K 98.6% 99.7% 1.3x10-3
QCD (sequence) 140K 97.4% 98.9% 8.8x10~3
(QED + QCD) on QED 391K 99.0% 99.4% 2.5x10~3
(QED + QCD) on QCD 391K 97.6 % 98.8% 6.8x10~3
QED (diagram) 258K 99.0% 99.7% 9.3%10~
QCD (diagram) 142K 73.4% 82.0% 0.3



