FAIR principles for Digital Objects in High Energy Physics A Case Study with Universal FeynRules Output (UFO) Models

### Avik Roy, Mark Neubauer, Zijun Wang

University of Illinois at Urbana-Champaign

Mark S. Neubauer<sup>1</sup>, Avik Roy<sup>1\*</sup> and Zijun Wang<sup>1</sup>

March 17, 2023

#### Abstract

arXiv:2209.09752v4 [hep-ph] 16 Mar 2023

Research in the data-intensive discipline of high energy physics (HEP) often relies on domain-specific digital contents. Reproducibility of research relies on proper preservation of these digital objects. This paper reflects on the interpretation of principles of Findability, Accessibility, Interoperability, and Reusability (FAIR) in such context and demonstrates its implementation by describing the development of an end-to-end support infrastructure for preserving and accessing Universal FeynRules Output (UFO) models guided by the FAIR principles. UFO models are custom-made python libraries used by the HEP community for Monte Carlo simulation of collider physics events. Our framework provides simple but robust tools to preserve and access the UFO models and corresponding metadata in accordance with the FAIR principles.

| Contents |  |
|----------|--|
|          |  |

| 1 | Introduction                              | 2 |
|---|-------------------------------------------|---|
| 2 | The Need to FAIRify UFO Models            | 3 |
| 3 | Cyberinfrastructure for FAIRifying UFOs   | 4 |
|   | 3.1 UFOManager                            | 5 |
|   | 3.2 UFOMetadata                           | 7 |
|   | 3.3 FAIRifying UFOManager and UFOMetadata | 8 |
| 4 | Outlook and Conclusion                    | 8 |

Details in our paper <u>arxiv: 2209.09752</u> recently accepted at *SciPost Physics Codebases* Git repositories: <u>https://github.com/Neubauer-Group/UFOManager</u> <u>https://github.com/Neubauer-Group/UFOMetadata/</u>



CHEP, Norfolk, VA May 09, 2023

# **The FAIR Principles**

- To inspire scientific data management for reproducibility and maximal reusability<sup>1</sup>
- Originally proposed for scientific data
- Can be interpreted as guidelines to manage and preserve other Digital Objects (DOs) e.g. research software<sup>2</sup> , tutorials and notebooks<sup>3</sup> , AI and ML models<sup>4</sup>
- Different working groups working on FAIR guidelines for different DOs (e.g <u>FAIR4RS</u>, <u>FAIR</u> <u>workflows</u>, <u>FAIR VREs</u>)

|                                                                                    | FAIR DATA PRINCIPLES |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 |          |
|------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|----------|
| idable:locating DOs in a failsafe fashioncessible:obtaining DOs along with their   | AH!                  | I O I I O I<br>OII O I I O I<br>I O I O | HOW DO YOU<br>OPEN A .XEQ FILE? |          |
| eroperable: context, content, and format<br>being usable across multiple           | (C)                  | f                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 | ▶ ₽      |
| usable: computing platforms<br>specifying the context and extent<br>of reusing DOs | Tinbable             | Accessible                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | INTEROPERABLE                   | REUSABLE |

# **Extending FAIR to Other Digital Objects**

- Interpretation of FAIR depends on the nature of the digital content being FAIRified
- Dedicated work being done for interpreting and benchmarking the FAIR principles for a variety of digital objects
- Question: What kind of tools and processes are needed to make HEP DOs FAIR?
- Constraints:
  - FAIRification without interfering with the established 0 practices of developing the DOs
  - Compatible with existing DOs as well as newer content 0
  - Preferably, an end-to-end software system with certain 0 automations incorporated

#### arxiv: 2212.05081

#### FAIR AI Models in High Energy Physics

Javier Duarte<sup>1</sup>, Haoyang Li<sup>1</sup>, Avik Roy<sup>2</sup>, Ruike Zhu<sup>2,3</sup>, E. A. Huerta<sup>3,4</sup>, Daniel Diaz<sup>1</sup>, Philip Harris<sup>5</sup>, Raghav Kansal<sup>1</sup>, Daniel S. Katz<sup>2</sup>, Ishaan H. Kayoori<sup>1</sup> Volodymyr V, Kindratenko<sup>2</sup>, Farouk Mokhtar<sup>1</sup> Mark S. Neubauer<sup>2</sup>, Sang Eon Park<sup>5</sup>, Melissa Quinnan<sup>1</sup>, Roger Rusack<sup>7</sup>, and Zhizhen Zhao<sup>2</sup> <sup>1</sup>University of California San Diego, La Jolla, California 92093, USA <sup>2</sup>University of Illinois at Urbanas Champaign, Urbana, Illinois 61801, USA <sup>3</sup>Argonne National Laboratory, Lemont, Illinois 60439, USA

<sup>4</sup>The University of Chicago, Chicago, Illinois 66637, USA <sup>5</sup>Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA <sup>6</sup>Hahcaoğlu Data Science Institute, La Jolla, California 92093, USA E-mail: SduarteQuesd.edu 22 December 2022

Abstract. The findable, accessible, interomerable, and reusable (FAIR) data principles have provided a framework for examining, evaluating, and improving how we share data with the aim of facilitating scientific discovery. Efforts have been made to generalize these principles to research software and other digital products. Artificial intelligence (AI) models-algorithms that have been trained on data rather than explicitly programmed-are an important target for this because of the everincreasing pace with which AI is transforming scientific and engineering domains. In this paper, we propose a practical definition of FAIR principles for AI models and create a FAIR AI project template that promotes adherence to these principles. We demonstrate how to implement these principles using a concrete example from recommentation in the intervention of the principles in the principles in the principle in their portability across hardware architectures and software frameworks, and report new insulation of the interpretability of AI predictions by studying the interpretability between FAIR datasets and AI models. Enabled by publishing FAIR AI models, these studie pave the way toward reliable and automated AI-driven scientific discovery

#### arxiv: 2210.08973

FAIR for AI: An interdisciplinary, international, inclusive, and diverse community building perspective

E. A. Huerta<sup>1,2,\*</sup>, Ben Blaiszik<sup>1,3</sup>, L. Catherine Brinson<sup>4</sup>, Kristofer E. Bouchard Diaz<sup>10</sup>, Caterina Doglioni<sup>10</sup>, Javier M. Duarte<sup>10</sup>, Murali Emani<sup>11</sup>, Ian Foster<sup>1,2</sup>, Geoffrey Fox<sup>12</sup>, Philip Harris<sup>13</sup>, Lukas Heinrich<sup>14</sup>, Shantenu Jha<sup>15,16</sup>, Daniel S. Katz<sup>17,18,19,20</sup>. Volodymyr Kindratenko<sup>17, 18, 19</sup>, Christine R. Kirkpatrick<sup>21</sup>, Kati Lassila-Perini<sup>22</sup>, Ravi K. Madduri<sup>1</sup>, Mark S. Neubauer<sup>17,19,23</sup>, Fotis E. Psomopoulos<sup>24</sup>, Avik Roy<sup>17,23</sup>, Oliver Rübel<sup>2</sup> Zhizhen Zhao<sup>17, 19</sup>, and Ruike Zhu<sup>18</sup> <sup>1</sup>Data Science and Learning Division, Argome National Laboratory, Lamont, Illinois 60439, USA <sup>1</sup>Department of Computer Science, University of Chicago, Chicago, Ulinois 60637, USA <sup>1</sup>Globus, University of Chicago, Chicago, Illinois 60637, USA <sup>1</sup>Department of Machanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708,

USA Construction of the District Learning Revision (National Construct), DeVision (2014), 2014. USA Distribution (National Transform), Calaboration (National Learning Production (National Learning Production), Calaboration (National Learning), Calaboration (National Learning), Calaboration (National National Natio

22904, USA <sup>17</sup>Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA <sup>14</sup>Technical University Munich, Accestratile 21 80303 Minchen, Germany

<sup>10</sup>Computational Science Initiative Brookhaven National Laboratory Upton, New York 11973, USA
<sup>10</sup>Electrical and Computer Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey

National Center for Supercomputing Applications, University of Illinois, Urbana-Champaign, Urbana, Illinois 61801, USA

e 1801, USA <sup>10</sup>Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA <sup>10</sup>Department of Floritical & Computer Science, University of Illinois at Urbana, Champaign, Urbana, Illinois 61801, USA tment of Electrical & Computer Engineering, University of Illinois at Urbana-Champaign, Urbana 1801, USA

1601, USA School of Information Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA San Diego Supercomputer Center, University of California San Diego, La Jolia, California 92093, USA Helsinki Institute of Physics, P.O. Box 64, 00014 University of Helsinki, Finland Testamin Instatute of Physics, Proceeding of Illinois at Ubbars-Chambergy of resemp. Instatute "Department of Physics, University of Illinois at Ubbars-Chambergin, Ubbars, Illinois 61801, USA "Instatute of Applied Biocolences, Centre for Research and Technology Helas, Thessaloniki 57001, Greece elind@anl.gov. elino2wchicage.edu

DOI: 10.1038/s41597-022-01710-x scientific data

Explore content ~ About the journal ~ Publish with us ~

nature > scientific data > articles > article

Article Open Access Published: 14 October 2022

#### Introducing the FAIR Principles for research software

Michelle Barker , Neil P. Chue Hong, Daniel S. Katz, Anna-Lena Lamprecht, Carlos Martinez-Ortiz, Fotis Psomopoulos, Jennifer Harrow, Leyla Jael Castro, Morane Gruenpeter, Paula Andrea Martinez & Tom Honeyman

### Universal FeynRules Output (UFO) Models

- UFO models are used for simulating Beyond Standard Model Physics with Monte Carlo generators
- Custom Python libraries that pack necessary physics content as modules
- Designed to be **Interoperable** across multiple generator
- Heavily used in ATLAS and CMS analyses
- No uniform convention for management and citation practices for these models
- Most models are preserved at the <u>FeynRules Model</u>
   <u>Database</u> w/o dedicated metadata preservation or version controlling

| Model-independent files | Model-dependent files |
|-------------------------|-----------------------|
|                         | particles.py          |
| initpy                  | coupling_orders.py    |
| object_library.py       | parameters.py         |
| function_library.py     | vertices.py           |
| write_param_card.py     | couplings.py          |
|                         | lorentz.py            |

## Why FAIRify UFOs? The Case for UFO Citations

- In many cases, only the theory paper describing the physics model is cited
- The actual digital object i.e. the implementation of the model itself is not always cited
- When cited, no uniform convention is followed
- Often digital repositories are cited, that may be lost/changed when the hosting service or the hosting account becomes inactive

- [220] DM forum repository, *Higgs\_scalar UFO model webpage*, https://svnweb.cern.ch/cern/wsvn/LHCDMF/trunk/models/Higgs\_scalar\_UFO/.
- [221] DM forum repository, Zp2HDM\_UFO UFO model webpage, https://svnweb.cern.ch/cern/wsvn/LHCDMF/trunk/models/EW\_Higgs\_2HDM/.
- [222] DM forum repository, DMS\_tloop UFO model webpage, https://svnweb.cern.ch/cern/wsvn/LHCDMF/trunk/models/Monojet\_DMS\_tloop/.
- [223] DM forum repository, DMScalarMed\_loop UFO model webpage, https://svnweb.cern.ch/cern/wsvn/LHCDMF/trunk/models/HF\_S+PS/.
- [224] DM forum repository, dmS\_T UFO model webpage, https://svnweb.cern.ch/cern/wsvn/ LHCDMF/trunk/models/Monojet\_tChannel/contributed\_by\_Amelia\_Brennan/.

#### From the references in JHEP 05 (2019) 142



# Making UFOs FAIR

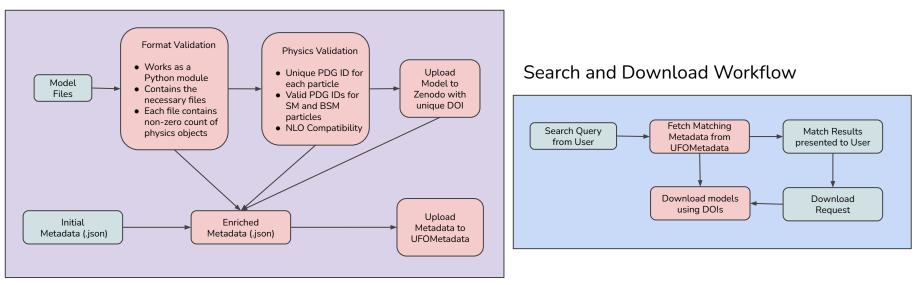
- Making UFOs FAIR requires consistent standards for
  - preserving the models with persistent identifiers like DOIs (F, A)
  - storing domain-specific enriched metadata (I, R)
  - allowing search and download models (F, R)
- FAIRification should be independent of developing the UFO, compatible with existing models (hence, compatible with both Python 2 and 3)

### **UFOManager**

Dedicated software developed to

- Validate models
- Create enriched metadata
- Store said metadata in dedicated repo
- Publish model in Zenodo with DOI
- Facilitate search and download of models
- Allows version controlling

### <u>UFOMetadata</u>


Dedicated repository developed to

- Store metadata of published UFO models
- Validate metadata format with continuous integration

6

## UFOManager

### Upload Workflow



## **The Enriched** Metadata

| { |                    |                                                   |
|---|--------------------|---------------------------------------------------|
|   | "Author": [        |                                                   |
|   |                    | {"name" : "Luca Panizzi",                         |
|   |                    | "affiliation": "Uppsala University",              |
|   |                    | "contact": "luca.panizzi@physics.uu.se"},         |
|   |                    | {"name" : "Benjamin Fuks",                        |
|   |                    | "affiliation": "Sorbonne University",             |
|   |                    | "contact": "fuks@lpthe.jussieu.fr"}               |
|   | ],                 |                                                   |
|   | "Paper_id":        | {"doi": "10.1140/epjc/s10052-017-4686-z",         |
|   |                    | "arXiv" : "1610.04622"},                          |
|   | "Description":     | "Vector-like Quark UFO Model at NLO QCD           |
|   |                    | with four flavour scheme",                        |
|   | "Model Homepage" : | "https://feynrules.irmp.ucl.ac.be/wiki/NLOModels" |
| } |                    |                                                   |

Initial Metadata





| "Model name":<br>"Model Doi":                                 | "UFO model for Vector-like Quarks at NLO QCD with four flavor scheme",<br>""10.5281/zenodo.6977663"", |
|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| "Author":                                                     | 10.5261/201000.09//003 ,                                                                              |
|                                                               | {"name" : "Luca Panizzi",                                                                             |
|                                                               | "affiliation": "Uppsala University",                                                                  |
|                                                               | "contact": "luca.panizzi@physics.uu.se"},                                                             |
|                                                               | {"name" : "Benjamin Fuks",                                                                            |
|                                                               | "affiliation": "Sorbonne University",                                                                 |
|                                                               | "contact": "fuks@lpthe.jussieu.fr"}                                                                   |
| ],                                                            |                                                                                                       |
| "Paper_id":                                                   | {"doi": "10.1140/epjc/s10052-017-4686-z",                                                             |
|                                                               | "arXiv" : "1610.04622"},                                                                              |
| "Description":                                                | "Vector-like Quark UFO Model at NLO QCD                                                               |
|                                                               | with four flavour scheme",                                                                            |
| "Model Homepage" :                                            | "https://feynrules.irmp.ucl.ac.be/wiki/NLOModels",                                                    |
| "Number of decays":                                           | 10,                                                                                                   |
| "Number of coupling orders":                                  | 3,<br>97,                                                                                             |
| "Number of coupling tensors":<br>"Number of lorentz tensors": | 39.                                                                                                   |
| "Number of parameters":                                       | 98,                                                                                                   |
| "Number of vertices":                                         | 125.                                                                                                  |
| "Number of propagators":                                      | 4,                                                                                                    |
| "Model Python Version":                                       | 2,                                                                                                    |
| "Model Version":                                              | 1.0,                                                                                                  |
| "Allows NLO calculations":                                    | true,                                                                                                 |
| "All Particles":                                              | {"ve": 12, "ghG~": -82, "y~": -6000008,                                                               |
| All Ideologico .                                              | "u~": -2, "vm~": -14, "vt": 16, "s": 3,                                                               |
|                                                               | "c~": -4, "t~": -6, "G0": 250, "u": 2,                                                                |
|                                                               | "ve~": -12, "tp": 6000006,                                                                            |
|                                                               | "x~": -6000005, "G-": -251,                                                                           |
|                                                               | "ta+": -15, "G+": 251, "vt~": -16, "e-": 11,                                                          |
|                                                               | "y": 6000008, "e+": -11, "H": 25, "t": 6,                                                             |
|                                                               | "vm": 14, "d~": -1, "s~": -3,                                                                         |
|                                                               | "mu-": 13, "ghG": 82, "bp": 6000007, "a": 22,                                                         |
|                                                               | "x": 6000005, "ta-": 15,                                                                              |
|                                                               | "b∼": -5, "Z": 23,                                                                                    |
|                                                               | "d": 1, "g": 21,                                                                                      |
|                                                               | "W-": -24, "W+": 24,                                                                                  |
|                                                               | "tp~": -6000006, "mu+": -13,                                                                          |
| "SM Particles":                                               | "bp~": -6000007, "c": 4, "b": 5, },<br>{"ve": 12, "u~": -2, "vm~": -14, "vt": 16, "s": 3,             |
| on faiticies :                                                | "c~": -4, "t~": -6, "u": 2,"ve~": -12,                                                                |
|                                                               | "ta+": -15, "vt~": -16, "e-": 11,                                                                     |
|                                                               | "e+": -11, "H": 25, "t": 6,                                                                           |
|                                                               | "vm": 14, "d~": -1, "s~": -3,                                                                         |
|                                                               | "mu-": 13, "a": 22, "ta-": 15,                                                                        |
|                                                               | "b~": −5, "Z": 23,                                                                                    |
|                                                               | "d": 1, "g": 21,                                                                                      |
|                                                               | "W-": -24, "W+": 24,                                                                                  |
|                                                               | "tp~": -6000006, "mu+": -13,                                                                          |
|                                                               | "bp~": -6000007, "c": 4, "b": 5, },                                                                   |
| "New elementary particles":                                   | {"GO": 250, "y~": -6000008, "tp": 6000006,                                                            |
| New elementary particles .                                    | "bp": 6000007, "x~": -6000005, "x": 6000005,                                                          |
|                                                               | "y": 6000008, "tp~": -6000006, "G-": -251,                                                            |
|                                                               | "G+": 251, "bp~": -6000007 }                                                                          |
| "BSM particles with standard PDG codes":                      |                                                                                                       |
|                                                               | "tp": 6000006, "tp~": -6000006,                                                                       |
| "Particles with PDG-like IDs":                                | {"GO": {"charge": 0.0, "spin": 1, "id": 250},                                                         |
|                                                               | "bp": {"charge": -1/3, "spin": 2, "id": 6000007},                                                     |
|                                                               | "x ": {"charge": -5/3,"spin": 2,"id": -6000005 },                                                     |
|                                                               | "y ": {"charge": 4/3, "spin": 2, "id": -6000008 },                                                    |
|                                                               | "y": {"charge": -4/3, "spin": 2, "id": 6000008 },                                                     |
|                                                               | "x": {"charge": 5/3, "spin": 2, "id": 6000005 },                                                      |
|                                                               | "bp ": {"charge": 1/3, "spin": 2, "id": -6000007}}                                                    |

# UFOMetadata

- Stores Metadata for FAIRified UFO models
- Interfaces with the Upload script of UFOManager to enable the storage of enriched metadata, and with the Download script to enable search for the right UFO models
- Has a built-in Continuous Integration Workflow to automate the integration of new UFO models

| promain + UFOMetadata / Metadata /             |                  | Go to file Add file *         |
|------------------------------------------------|------------------|-------------------------------|
| <sup>г-к</sup> <b>yorkiva</b> updated metadata |                  | × 30360ee on Jan 25 🕤 History |
|                                                |                  |                               |
| DMSimpt_NLO_v1_2_UFO.json                      | updated metadata | 4 months ago                  |
| DMspin2.json                                   | updated metadata | 4 months ago                  |
| SM_with_pNG_UFO.json                           | updated metadata | 4 months ago                  |
| SM_with_pNG_UFO_py3.V2.0.json                  | updated metadata | 4 months ago                  |
| SUSYQCD_UFO.json                               | updated metadata | 4 months ago                  |
| VLQ_v4_5FNS_UFO.json                           | updated metadata | 4 months ago                  |
| VLQ_v5_4FNS_NLO_UFO.V2.0.json                  | updated metadata | 4 months ago                  |
| VLQ_v5_4FNS_NLO_UFO.V3.0.json                  | updated metadata | 4 months ago                  |
| VLQ_v5_4FNS_only3rd_NLO_UFO.json               | updated metadata | 4 months ago                  |
| VLQ_v5_5FNS_NLO_UFO.V2.0.json                  | updated metadata | 4 months ago                  |
| VLQ_v5_5FNS_only3rd_NLO_UFO.json               | updated metadata | 4 months ago                  |
| C sgluons_NLO.json                             | updated metadata | 4 months ago                  |
| stop_ttmet_NLO.json                            | updated metadata | 4 months ago                  |
| l vlq_v4_4fns.json                             | updated metadata | 4 months ago                  |

# **Summary and Outlook**

- The work presented here is a demonstrative example of the kind of tools and approaches needed to FAIRify custom-HEP DOs
- Room for improvement:
  - Seamless integration with existing model repositories and databases
  - $\circ$  ~ Work to be done to include compatibilities with UFO v2.0 ~
  - Making it a part of a more sustainably preserved cyberinfrastructure for development, preservation, dispersion, and citation of UFO models
- Ultimately, we hope to initiate and engage in a larger community-wide discussion on adaptation of FAIR principles for DOs (UFOs and beyond) in HEP



Mark Neubauer



Zijun Wang

## References

- 1. Wilkinson, M., Dumontier, M., Aalbersberg, I. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci Data 3, 160018 (2016). <u>https://doi.org/10.1038/sdata.2016.18</u>
- 2. Chue Hong, Neil P., Katz, Daniel S., Barker, Michelle et al. RDA FAIR4RS WG. (2022). FAIR Principles for Research Software (FAIR4RS Principles) (1.0). <u>https://doi.org/10.15497/RDA00068</u>
- 3. Richardson, R. A., et al. "User-friendly Composition of FAIR Workflows in a Notebook Environment." Proceedings of the 11th on Knowledge Capture Conference. 2021. <u>https://doi.org/10.1145/3460210.3493546</u>
- 4. Katz, D. S., Psomopoulos, F. E., and Castro, L. J. "Working towards understanding the role of FAIR for machine learning." DaMaLOS@ ISWC (2021): 1-7. <u>https://doi.org/10.4126/FRL01-006429415</u>