

MicroBooNE Public Data Sets: a Collaborative Tool for LArTPC Software Development

G. Cerati (FNAL), on behalf of the MicroBooNE Collaboration CHEP23 - Norfolk, VA May 09, 2023

Fermilab U.S. DEPARTMENT OF Office of Science

MicroBooNE

- Neutrino experiment at Fermilab, designed to test the MiniBooNE anomaly
 - ~same beam (BNB) and distance from source
- Broader experimental program:
 - Test short-baseline oscillations as part of SBN
 - BSM physics searches
 - nu-Ar cross sections
- Physics operations: 2015-2021
- Analyzed about 1/2 data, producing over 50 publications: https://microboone.fnal.gov/documents-publications/

MicroBooNE's Liquid Argon Time Projection Chamber (LArTPC)

- Charged particles produced in neutrino interactions ionize the argon, ionization electrons drift in electric field towards anode planes
- Sense wires detect the incoming charge, producing beautiful detector data images

3 planes allow for 3D reco

MicroBooNE's Liquid Argon Time Projection Chamber (LArTPC)

- Charged particles produced in neutrino interactions ionize the argon, ionization electrons drift in electric field towards anode planes
- Sense wires detect the incoming charge, producing beautiful detector data images
- Full detail of neutrino interaction with O(mm) spatial resolution and calorimetric information
- Fast scintillation light detected by Optical system (PMT) for trigger & cosmic rejection

JINST 12, P02017 (2017)

MicroBoNE open samples: motivation

- Establish MicroBooNE as state of the art LArTPC technology.
- as computer scientists.

 - Facilitate integration of tools with other LArTPC experiments (SBN and DUNE).
 - The output of external collaborations is directly usable within MicroBooNE.
- Potentially attract developments from beyond our community.
 - Data challenges, etc.

- Attested primarily by our publications, but public datasets provide direct reference point.

Efficient collaboration with colleagues in LArTPC experiments, as well

- SW development collaborations don't need an MoU and nor external public datasets.

Implementation of open samples: overview

• Open two "overlay" samples: BNB inclusive and BNB intrinsic v_e

2023/05/09 G. Cerati (FNAL) 6

104 cm

Cosmic ray background and noise from data

Implementation of open samples: overview

• Open two "overlay" samples: BNB inclusive and BNB intrinsic v_e

2023/05/09 G. Cerati (FNAL)

104 cm

Simulated neutrino interaction

Implementation of open samples: overview

- Open two "overlay" samples: BNB inclusive and BNB intrinsic v_e
- Inspired by <u>FAIR</u> principles (findable, accessible, interoperable, reusable data)
- Two formats: regular reconstructed art/ROOT and HDF5 - respectively targeting LArTPC and broader data & computer science communities
- Artroot files stored on persistent dCache pool area and made accessible with xrootd - list of xrood urls stored with the corresponding HDF5 files on Zenodo
- - requesting resulting software products to be made available

HDF5 files stored on <u>Zenodo</u>, providing citable DOI (digital object identifier) & versioning

• Samples available under <u>"cc-by" license</u>. Template text for acknowledgment is provided.

Dataset definitions

Sample	DOI	N events	N HDF5 files	HDF5 size	N artroot files	artroot size
Inclusive, NoWire	10.5281/zenodo.7261798	141,260	20	34 GB	3400	787 GB
Inclusive, WithWire	10.5281/zenodo.7262009	24,332	18	44 GB	720	136 GB
Electron neutrino, NoWire	10.5281/zenodo.7261921	89,339	20	31 GB	2151	761 GB
Electron neutrino, WithWire	10.5281/zenodo.7262140	19,940	20	39 GB	540	170 GB

Open BNB inclusive sample is a subsample of what internally available. We may open a larger sample upon request and if technically feasible.

Each HDF5 sample comes in two flavors: with and without wire information (waveform). Due to size requirements, sample with this information contain less events.

Access point

• Entry point is the MicroBooNE website: - https://microboone.fnal.gov/documents-publications/public-datasets/

About MicroBooNE

MicroBooNE Code of Conduct		
Physics		
Detector	>	
Collaboration		
R&D Program		
Documents and Publications	>	
Images and videos	>	
In the News		
Contact		

For Collaborators (password required)

Search this site...

Search

Related Experiments

- Short Baseline Neutrino Program
- LArIAT Test Beam
- DUNE Long Baseline
- ArgoNeuT
- More Fermilab Neutrino Experiments

Public Datasets

Two MicroBooNE datasets are opened to the public. They contain simulated neutrino interactions, overlaid on top of cost Both simulate neutrinos in the Booster Neutrino Beam (BNB). The first sample includes all types of neutrinos and interact place in the whole cryostat volume), with relative abundance matching our nominal flux and cross section models. The se is restricted to charged-current electron neutrino interactions within the argon active volume of the time projection cham

Samples are provided in two different formats: HDF5, targeting the broadest audience, and artroot, targeting users that a the software infrastructure of Fermilab neutrino experiments and more in general of HEP experiments. The HDF5 files and list of xrootd urls providing access to the artoot files are stored on the open data portal Zenodo, and can be accessed fro links in the table below. Artroot files contain the full information available to members of the collaboration, while HDF5 fi reduced and simplified content. Each HDF5 sample is provided in two versions: with and without wire information. The re when present, the wire information largely dominated the file size. A second set of datasets is therefore created without information, thus allowing storage of a significantly larger number of events for applications that do not use the wire information events are defined as independent detector read outs).

Sample	DOI	N events	N HDF5 files	HDF5 size	N artroot files	i
Inclusive, NoWire	10.5281/zenodo.7261798	141,260	20	34 GB	3400	
Inclusive, WithWire	10.5281/zenodo.7262009	24,332	18	44 GB	720	
Electron neutrino, NoWire	10.5281/zenodo.7261921	89,339	20	31 GB	2151	
Electron neutrino, WithWire	10.5281/zenodo.7262140	19,940	20	39 GB	540	

Detailed documentation for accessing the datasets is provided at https://github.com/uboone/OpenSamples.

Samples are released under CC-by license, allowing users to freely reuse the data with the requirement of giving appropriate credit to the collaboration for providing the datasets.

Suggested text for acknowledgment is the following:

We acknowledge the MicroBooNE Collaboration for making publicly available the data sets [data set DOIs] employed in this work. These data sets consist of simulated neutrino interactions from the Booster Neutrino Beamline overlaid on top of cosmic data collected with the MicroBooNE detector [2017 JINST 12 P02017].

In addition, although not enforced by the license, we request that software products resulting from the usage of the datasets are also made publicly available.

mic ray data.
tions (taking
econd sample
ber.

re familiar with				
d a file with the				
om the DOI				
es have a				
eason is that,				
he wire				
rmation (where				

170 GB

Description

Links to Zenodo

Link to documentation

Info about license and citation

art/ROOT format: definition and documentation

- Target users of this format is the LArTPC community, i.e. physicists already familiar with the LArSoft software environment
- art/ROOT files include the full information available to the Collaboration members, both at simulation and reconstruction level
- Documentation assumes prior knowledge of these tools and consists of:
- description of the samples and list of data products stored
 - <u>https://github.com/uboone/OpenSamples/blob/v01/file-content-artroot.md</u>
 - links to documentation websites (LArSoft, xrootd, etc...)
 - instructions to setup the software release (uboonecode and LArSoft) from CVMFS
 - link to module for creating HDF5 files as example of how to access the artroot content

HDF5 format: scope and file content

- HDF5 include a reduced subset of the art/ROOT information
 - In a simplified format for usage by non-experts. Still, designed to allow a wide range applications.
- The following information is stored in the HDF5 files:
 - Noise-filtered and deconvolved wire waveforms in regions of interest
 - TPC Hit information
 - Optical Hit and Flash information
 - MC Truth information
 - incoming neutrino properties, energy deposits as associated to hits, Geant4 particles
- In addition we provide information for benchmarking purposes:
 - Based on the Pandora reconstruction package [Eur. Phys. J. C78, 1, 82 (2018)]

- E.g.: neutrino identification, track-shower classification, interaction and cluster hit mapping,...

Documentation - HDF5

- Documentation mainly consists of **notebooks** for demonstration of usage:
 - https://github.com/uboone/OpenSamples/tree/v01
 - Recipe for installing required packages in a conda environment with minimal dependencies
 - Use **pynuml** for handling file I/O
 - Notebooks are also briefly introduced to clarify their purpose
 - Auxiliary tools: functions for basic detector navigation and minimal plotting utils

MicroBooNE open samples

Two MicroBooNE datasets are opened to the public. They contain simulated neutrino interactions, overlaid on top of cosmic ray data Both simulate neutrinos in the Booster Neutrino Beam (BNB). The first sample includes all types of neutrinos and interactions (taking place in the whole cryostat volume), with relative abundance matching our nominal flux and cross section models. The second sample is restricted to charged-current electron neutrino interactions within the argon active volume of the time projection chamber.

Samples are provided in two different formats: HDF5, targeting the broadest audience, and artroot, targeting users that a with the software infrastructure of Fermilab neutrino experiments and more in general of HEP experiments. The HDF5 files and a file with the list of xrootd urls providing access to the artoot files are stored on the open data portal Zenodo, and can be accessed from the DOI links in the table below. Artroot files contain the full information available to members of the collaboration, have a reduced and simplified content. Each HDF5 sample is provided in two versions: with and without wire information. The reason is that, when present, the wire information largely dominated the file size. A second set of datasets is therefore created without the wire information, thus allowing storage of a significantly larger number of events for applications that do not use the wire information (where events are defined as independent detector read outs)

Sample	DOI	N events	N HDF5 files	HDF5 size	N artroot files
Inclusive, NoWire	10.5281/zenodo.7261798	141,260	20	34 GB	3400
Inclusive, WithWire	10.5281/zenodo.7262009	24,332	18	44 GB	720
Electron neutrino, NoWire	10.5281/zenodo.7261921	89,339	20	31 GB	2151
Electron neutrino, WithWire	10.5281/zenodo.7262140	19,940	20	39 GB	540

HDF5 format

This section provides documentation on how to access the information included in the HDF5 files. Examples demonstrating how to use the data is provided in the form of jupyter notebooks. The full description of the file content is also provided.

The HDF5 format is a product of the HDF5 group. In the notebookes we open the files using the File class from pynuml, which internally relies on h5py. We also use p5concat to merge files and to add auxiliary data for faster lookup of related information across different tables

Jupyter notebooks

Local Setup

Documentation - HDF5

• It also includes a documentation of the file content, in a table with brief description of each element stored in the dataset

File Entry	Туре	N Elements	Description
/	Group		Main entry point of the file.
/event_table	Group		Table storing information about a single detector readout and a single simulated neutrino interaction.
/event_table/event_id	Dataset	3	Run/Subrun/Event number for a detector readout.
/event_table/event_id.seq_cnt	Dataset	2	Auxiliary information added in post-processing step for simple grouping and fast access of table entries separated by event.
/event_table/is_cc	Dataset	1	If 1 the simulated neutrino interaction is charged-current, if 0 it is neutral-current.
/event_table/lep_energy	Dataset	1	Simulated energy of the lepton outgoing from the neutrino interaction (in GeV).
/event_table/nu_dir	Dataset	3	Initial direction of the simulated neutrino interacting in the detector (3D cartesian coordinates).
/event_table/nu_energy	Dataset	1	Simulated energy of the interacting neutrino (in GeV).
/event_table/nu_pdg	Dataset	1	Particle Data Group (PDG) particle code for the interacting neutrino. See https://pdg.lbl.gov/2022/reviews/rpp2022-rev-monte-carlo-numbering.pdf.
/event_table/nu_vtx	Dataset	3	Simulated position of neutrino interaction (3D cartesian coordinates, in cm). This quantity is to be used to compare with e.g. the detector boundaries.

Highlights from notebooks: Sample Exploration

Goal of this notebook is to familiarize with the sample content and with tools provided to understand the LArTPC detector properties. E.g.: wire positions and intersections, neutrino interaction position in the cryostat, simulated particle multiplicities.

15 2023/05/09 G. Cerati (FNAL)

Highlights from notebooks: Hit Labeling

Goal of this notebook is to demonstrate ground-truth labeling of TPC hits according to different categorizations. Each categorization can be the target of specific algorithms / network training. E.g.: neutrino identification, semantic segmentation, instance segmentation.

2023/05/09 G. Cerati (FNAL) 16

cosmic_label plot

instance_label plot

Highlights from notebooks: Wirelmage

This notebook demonstrates the TPC data visualization in image format. It can be used for visual data processing, e.g. Convolutional Neural Networks. Ground truth at wire level not provided, but can be extracted matching the waveform and hit information.

2023/05/09 G. Cerati (FNAL) 17

Needs "WithWire" samples containing waveform info

Phys. Rev. D103, 052012 (2021) Phys. Rev. D103, 092003 (2021) Phys. Rev. D99, 092001 (2019) JINST 12, P03011 (2017)

Highlights from notebooks: Pandora metrics

Purpose of this notebook is to introduce the definition of important metrics, and produce performance results obtained using Pandora. E.g.: Purity and completeness at neutrino interaction or particle level, vertex resolution.

Eur.Phys.J.C 78 (2018) 1, 82

purity = Nhit_{true,found} / Nhit_{found} completeness = Nhit_{true,found} / Nhit_{true}

Highlights from notebooks: Optical Information

Purpose of this notebook is to demonstrate the usage of the optical detector information.

E.g.: Optical Hit properties, their clustering in time into "flash" objects, comparison of flash and neutrino TPC hit barycenters

2023/05/09 G. Cerati (FNAL) 19

Figure 29. Left: diagram of the optical unit; Right: units mounted in MicroBooNE, immediately prior to LArTPC installation.

Conclusions

- on Zenodo and via xrootd
- Software development and AI applications for LArTPC can benefit from them: - format can target images/CNN or other applications (e.g. GNN based on hits) - rich documentation for usage of these data sets

 - size of sample is enough for training
 - labeling examples can represent targets of ML applications
 - reference metrics from Pandora
 - enable porting of application to/from MicroBooNE
- Stats on Zenodo indicate hundreds of downloads already!
- Please reach out if you have questions or requests for more data/information!
 Fermilab

• MicroBooNE has opened samples for collaborative software development, available

MicroBooNE open data @ CHEP23

- Network achieves ~86% overall hit classification accuracy.
- With 3D connections, consistency of representations between views is now around 98%, compared to ~70% without.

Graph Neural Network for 3D Reconstruction in Liquid Argon Time Projection Chambers

V Hewes - Track 9

Online tagging and triggering with deep learning Al for next generation particle imaging detector

Meghna Bhattacharya - Track 2

... to be continued!?

FAIR Principles

- users?
- FAIR Principles provide guidelines for this purpose
 - **F**indable
 - Accessible
 - Interoperable
 - Reusable
 - Info at https://www.go-fair.org/fair-principles/

How to release a dataset that can be usable by the widest possible set of

FAIR Principles

• Findable

the FAIRification process.

Accessible

accessed, possibly including authentication and authorisation.

- The first step in (re)using data is to find them. Metadata and data should be easy to find for both humans and computers. Machine-readable metadata are essential for automatic discovery of datasets and services, so this is an essential component of

- Once the user finds the required data, she/he/they need to know how they can be

FAIR Principles

Interoperable

Reusable

different settings.

- The data usually need to be integrated with other data. In addition, the data need to interoperate with applications or workflows for analysis, storage, and processing.

- The ultimate goal of FAIR is to optimise the reuse of data. To achieve this, metadata and data should be well-described so that they can be replicated and/or combined in

List of principles

- F1. (Meta)data are assigned a globally unique and persistent identifier
- F2. Data are described with rich metadata (defined by R1 below)
- F3. Metadata clearly and explicitly include the identifier of the data they describe
- F4. (Meta)data are registered or indexed in a searchable resource
- A1. (Meta)data are retrievable by their identifier using a standardised communications protocol
- A1.1 The protocol is open, free, and universally implementable
- A1.2 The protocol allows for an authentication and authorisation procedure, where necessary
- A2. Metadata are accessible, even when the data are no longer available

- 11. (Meta)data use a formal, accessible, shared, and broadly applicable language for knowledge representation.
- I2. (Meta)data use vocabularies that follow FAIR principles
- I3. (Meta)data include qualified references to other (meta)data
- R1. (Meta)data are richly described with a plurality of accurate and relevant attributes
- R1.1. (Meta)data are released with a clear and accessible data usage license
- R1.2. (Meta)data are associated with detailed provenance
- R1.3. (Meta)data meet domain-relevant community standards

FAIR Principles in HEP

Table 1. Findable and Accessible principle assessment checks for the CMS $H(b\bar{b})$ Open Dataset.

Metric	Evaluation		
F1. (Meta)data are assigned globally unique	and persistent identifiers.		
Identifier Uniqueness: this metric mea-	Pass . The DOI for the data (which resolves to a URL ²⁷) follows a registered		
sures whether there is a scheme to uniquely	identifier scheme.		
identify the digital resource.			
Identifier Persistence: this measures	Pass . The use of a DOI provide a persistent interoperable identifier.		
whether there is a policy that describes what			
the provider will do in the event an identifier			
scheme becomes deprecated.			
F2. Data are described with rich metadata.			
Machine-readability of Metadata: to	Pass. The URL for the metadata ²⁸ in JSON Schema with REST API is		
meet this metric, a URL to a document con-	available. The use of JSON Schema provides clear human and machine		
taining machine-readable metadata for the	readable documentation. Also, running the URL through the Rich Result		
digital resource must be provided.	Test shows the data page contains rich results.		
Richness of Metadata: data are described	Partially pass. Reviewing the DataCite metadata for the DOI shows a fairly		
with rich metadata	sparse record. The metadata can be improved with richer fields.		
F3. Metadata clearly and explicitly include t	he identifier of the data they describe.		
Resource Identifier in Metadata: this	Pass. The association between the metadata and the dataset is made explicit		
measures if the metadata document con-	because the dataset's globally unique and persistent identifier can be found		
tains the identifier for the digital resource	in the metadata. Specifically, the DOI is a top-level and a mandatory field in		
that meets F1 principle.	the metadata record.		
F4. (Meta)data are registered or indexed in a searchable resource			
Index in a searchable resource: this	Pass. The dataset is indexed by Google Dataset Search engine.		
measures the degree to which the digital			
resource can be found using web-based			
search engines			
A1. (Meta)data are retrievable by their ident	ifier using a standardized communications protocol		
A1.1: The protocol is open, free and univers			
Access Protocol: it measures whether the	Pass. HTTP get on the identifier's URL returns a valid document		
URL is open access and free.			
A1.2. The protocol allows for an authenticat	tion and authorization where necessary		
Access Authorization: it requires specifi-	Pass . This is an open dataset, accessible to everyone on the internet. The		
cation of a protocol to access restricted con-	data is non-profit and privacy-unrelated, so no access authorization is needed.		
tent.			
A2. Metadata should be accessible even who	en the data is no longer available		
Metadata Longevity: it requires metadata	Pass. Metadata is stored separately in the CERN Open Data server. As per		
to be present even in the absence of data	FAIR Principle F3, this metadata remains discoverable, even in the absence		
	of the data, because it contains an explicit reference to the DOI of the data.		
	Data and metadata will be retained for the lifetime of the repository. The		
	host laboratory CERN, currently plans to support the repository for at least		
	the next 20 years.		

https://fair4hep.github.io/

Metric	Evaluation			
I1. (Meta)data use a formal, accessible, sh	ared, and broadly applicable language for knowledge			
representation.				
Use a Knowledge Representation (pro-	Pass. As described in Section 3, this dataset is represented based on the			
gramming) Language: use a formal, ac-	ROOT framework with Python interface. The notebook we release with this			
cessible, shared, and broadly applicable lan-	manuscript provides the required tools to handle this dataset using HDF5.			
guage for knowledge representation	The metadata is represented following the JSON Schema draft 4. Both are			
	widely used formats in Physics.			
Provide Human-readable descriptions	Pass. The description and data semantics of this dataset provides rich			
•	information on how to use the dataset.			
I2. (Meta)data use vocabularies that follow	FAIR principles.			
Use FAIR Vocabularies: it requires the	Partially pass . I2 requires the controlled vocabulary used to describe			
metadata values and qualified relations	datasets to be documented and resolvable using globally unique and persis-			
should be FAIR themselves, that is, terms	tent identifiers. For domain-specific terms, we leverage a vocabulary PhySH			
should be findable from open, community-	(Physics Subject Headings), a physics classification scheme developed by			
accepted vocabularies.	American Physical Society (APS). Some terms in dataset descriptions and			
1	semantics are registered in PhySH. However, since PhySH is still under			
	development, there is not very good coverage of the narrower experimental			
	concepts. For the terms not covered, references and hover definitions are			
	provided. For general terms, the metadata follows the vocabulary from			
	JSON Schema and a minimal set of FAIR terms are used.			
I3. (Meta)data include qualified references t				
Use Qualified References: The goal is to	Partially pass. There are connections with other datasets. A list of derived			
create as many meaningful links as possible	datasets is available at the dataset site ²⁷ . Each referenced external piece of			
between (meta)data resources to enrich the	dataset is qualified by a resolvable URL and a unique CERN data identifier			
contextual knowledge about the data.	in metadata. To improve, the papers of these related data can be provided,			
C C	from which more information about methods and workflow used to derive			
	this dataset can be retrieved, and external datasets should be references by			
	permanent identifiers rather than URLs.			
R1.1. (Meta)data are released with a clear an	nd accessible data usage license.			
Accessible Usage License: the existence	Pass. This dataset is released under Creative Commons CC0 dedication.			
of license document for (meta)data are be-	The license field is present in the metadata.			
ing measured	F			
R1.2. (Meta)data are associated with detailed provenance.				
Detailed Provenance: Who / What / When	Pass. The dataset is derived from other data, e.g. ^{29,30} , using public soft-			
produced the data? Why / How was the data	ware ³¹ that was made public to process and reduce it. We are able to track			
produced?	the original authors and data sources. But ideally, this workflow would be			
r	described in a machine-readable format.			
R1.3. (Meta)data meet domain-relevant com				
Meet Community Standards: it measures	Pass. Both metadata and data meet the CERN Open Data community			
whether a certification of the resource meet-	standards and thus have been released on the CERN Open Data repository.			
ing community standards exists.				

Table 2. Interoperable and Reusable principle assessment checks for CMS $H(b\bar{b})$ Open Dataset

arXiv:2108.02214 **Fermilab**

