

Luca Giommi

Istituto Nazionale di Fisica Nucleare CNAF

The ML INFN Initiative

Luca Giommi (INFN CNAF, Italy)

INFN Research and structures

216 activities distributed in 33 structures (labs, groups and divisions)

CSN1	Particle Physics	17 experiments
CSN2	Astroparticle Physics	45 experiments
CSNS	Nuclear Physics	23 experiments
CSN4	Theoretical Physics	35 initiatives
CSN5	Technological Research	96 experiments

Machine Learning applications in INFN

Most of the experiments and initiatives produce, analyse or process digital data.

Enthusiasm on the modern data processing technologies!

Gravitational wave detection

Theoretical computations on the lattice

ML_INFN: The structure of the project

Applications of Machine Learning HEP, MedPhys, GW detection, Theory...

Virtualization and **orchestration** layer developed and maintained by INFN Cloud

WP1. The infrastructure

INFN Cloud

ML INFN is built on top of INFN Cloud: a data-lake centric, heterogeneous federated Cloud infrastructure spanning over multiple sites across Italy, providing an extensible portfolio of solutions tailored to multidisciplinary scientific communities.

See also...

Talks: Fanzago, Marcon,
Mazzitelli

Poster: Michelotto, Sinisi

Federated bare-metal resources

$1 \times SuperMicro + 1 \times E4$ servers:

- 1.8 TB RAM
- 64-128 CPU cores
- 36 TB local storage (NVMe)
- 8× **Tesla T4** GPUs
- 5× **RTX 5000** GPUs
- 1× **A30** GPU
- 1× **A100** GPU, served as 7 independent MIG slices
- 10 GbE connection to CNAF resources

Federated to CNAF OpenStack and INFN Cloud

Storage solutions

CERN experiments data, contained in INFN Tier-1 storage, are remotely accessed via NFS

Hypervisors integrate Ceph to manage persistent virtual volumes accessed from the VM via POSIX

WP2. Stewardship

Luca Giommi (INFN CNAF, Italy)

May 2023

CHEP 2023 - Norfolk, Virginia, USA

Machine Learning hackathons: Base and Advanced level

To foster the adoption of machine learning tools and techniques in INFN community, we organize events to discuss ML algorithm with the time to look at (and hack) the code.

Starting-level Hackathons

Jun 2021, Dec 2021, Jun 2023

- online events with no fee
- up to 60 participants
- 1 tutor per 5 participants
- INFN Cloud CPUs with shared filesystem

Advanced Hackathons

Nov 2022

- in-person events
- up to **30 participants**
- (almost) 1 tutor per participant
- INFN Cloud GPUs with shared filesystem

Base hackathon: Lecture Program

Day 1

Lectures

Theoretical introduction to ML

Lectures

Cloud and Cloud Resources

Day 2

Hands-on

Neural Networks

Seminars

Deep Neural Network
Applications to INFN research

Day 3

Hackathon

Exercises with tutors continuous support

Lunch break

Hands-on

Numpy, Pandas and Keras

Hands-on

Exercises with tutors on demand

Closure

Reports from the students

Hackathon use cases: 10 groups, one tutor per group

Jet b-tagging at CMS

Recurrent Neural Networks with LSTM

Higgs searches at CMS

Deep Neural Networks and Advanced Keras

Gravitational Waves with Virgo

Autoencoders, anomaly detection and compression

Segmentation of CT scans

Convolutional Neural Networks Handling 2D and 3D datasets

(1

Bari, Puglia

Advanced hackathon: Lecture Program

Day 1

Day 2

Day 3

Day 4

Lectures

Advanced Models (U-Nets, GANs, NFs, ...)

Lectures

Advanced Models (Transformers, GNNs)

Lectures

Ongoing R&Ds in Machine Learning (FPGAs, HPO, ...)

Hands-on

Beyond Keras (Coding lower-level ops)

Lectures

Explainability

Hands-on

BondMachine
Compiling NN in VHDL

Lunch break

Lectures
Cloud Infrastructure and
High Performance
Computing

Hackathon

Exercises with tutors continuous support

Hackathon

Exercises with tutors continuous support

Advanced hackathon use cases

Lung Segmentation with U-Nets

U-Nets, custom loss, custom data loaders

Domain Adaptation in HEP

Adversarial Training,
Gradient Tape

GNN and Transformers in HEP

Application to Jet Tagging

Explainability

Shapley and GradCAM

WP3. The Knowledge Base

Luca Giommi (INFN CNAF, Italy)

May 2023 — Norfolk, Virginia, USA

Confluence Knowledge Base

Atlassian Confluence was used to build a **Knowledge Base** reporting several machine-learning use cases, including those discussed at the hackathon.

Each entry includes:

- Runnable example as a jupyter notebook or a git repository
- Contact information of one or more experts

Seminars organized in 2023

- 1) Improving parametric neural networks for high-energy physics (and beyond)
- 2) Cell counting with cell-ResUnet
- 3) A Neural-Network-defined Gaussian Mixture Model for particle identification applied to the LHCb fixed-target programme
- 4) Deep-learning emulators and hierarchical Bayesian inference: application to gravitational-wave astronomy
- 5) New Physics Learning Machine (NPLM): a tool for statistical anomalies detection in presence of systematic uncertainties
- 6) Machine Learning as a Service for High Energy Physics (MLaaS4HEP): a service for ML-based data analyses
- 7) Ante-hoc explainability methods: the ProtoPNet architecture and its application on DBT images

Publications

The novel Mechanical Ventilator Milano for the COVID-19 pandemic WOS:000632649400001 10.1063/5.0044445 PHYS FL	UIDS	2021
How to enhance quantum generative adversarial learning of noisy information WOS:000655340700001 10.1088/1367-2630/abf798 NEW J PI	HYS	2021
Deep learning method for TomoTherapy Hi-Art: prediction three-dimensional dose distribution WOS:000709667204219	IER ONCOL	2021
Model compression and simplification pipelines for fast deep neural network inference in FPGAs in HEP WOS:000714374500003 10.1140/epjc/s10052-021-09770-w EUR PHY	SJC	2021
Generalization in Quantum Machine Learning: A Quantum Information Standpoint WOS:000718152600001 10.1103/PRXQuantum.2.040321 PRX QUA	NTUM	2021
Model compression and simplification pipelines for fast deep neural network inference in FPGAs in HEP (vol 81, 969, 2021) WOS:000726095200001 10.1140/epjc/s10052-021-09875-2	SJC	2021
Calorimetric Measurement of Multi-TeV Muons via Deep Regression WOS:000749246700002 10.1140/epjc/s10052-022-09993-5	SJC	2022
A Neural-Network-defined Gaussian Mixture Model for particle identification applied to the LHCb fixed-target programme WOS:000770368300012 10.1088/1748-0221/17/02/P02018	IM	2022
Tau Lepton Identification With Graph Neural Networks at Future Electron-Positron Colliders WOS:000836356800001 10.3389/fphy.2022.909205 FRONT P	HYS-LAUSANNE	2022
Applications of artificial intelligence in stereotactic body radiation therapy WOS:000837374300001 10.1088/1361-6560/ac7e18 PHYS ME	D BIOL	2022
Model independent measurements of standard model cross sections with domain adaptation WOS:000869847800002 10.1140/epjc/s10052-022-10871-3	SJC	2022
Robust quantum classifiers via NISQ adversarial learning WOS:000890324500009 10.1038/s43588-022-00359-1 NAT CON	IPUT SCI	2022
Toward artificial-intelligence assisted design of experiments WOS:000908434600001 10.1016/j.nima.2022.167873	STRUM METH A	2023
Hyperparameter Optimisation of Artificial Intelligence for Digital REStoration of Cultural Heritages (AIRES-CH) Models WOS:000916462800007 10.1007/978-3-031-10536-4_7	TES COMPUT SC	2022

Summary

The ML_INFN initiative has been providing many INFN experiments with the hardware and the knowledge base to assess the potential **benefit of machine learning to their research** for three years.

The ML_INFN project relies on INFN Cloud solutions and it federates resources optimized for ML performance in interactive and batch-like usage patterns (high-end professional GPUs, NVMe disks, many-core high-RAM systems)

A series of national training events (*machine learning hackathons*) and a collection of tutorials and real applications within the INFN community (*knowledge base*) contribute to building a network of experienced and enthusiast machine learning practitioners, lowering the skill gap to benefit from machine learning developments.

Luca Giommi (INFN CNAF, Italy)

Thanks for the attention Questions?

Luca Giommi (INFN CNAF, Italy)

May 2023 — Norfolk, Virginia, USA

Backup

Luca Giommi (INFN CNAF, Italy)

May 2023

CHEP 2023 - Norfolk, Virginia, USA

The numbers of ML_INFN

- 12 INFN structures involved in the developments, training activities and hackathons
- 79 researchers devoting a fraction of their time to promote ML techniques for research
- 14 professional GPUs made available and accessible through the INFN Cloud Interface

143 participants to the hackathons, ranging from students to permanent staff members

Luca Giommi (INFN CNAF, Italy)

Stories of success [1]: building template models for LHCb

ML_INFN infrastructure was used to develop a model for the Particle Identification response of the LHCb detector as a Gaussian-Mixture model.

With Gaussian parameters inferred with a Deep Neural Network.

Traditional method based on reweighted MC

Deep Learning model

S. Mariani et al,
"A Neural-Network-defined Gaussian
Mixture Model for particle identification
applied to the LHCb fixed-target
programme", JINST 17 (2022) P02018

Stories of success [2]: studying LQCD with CNNs

A Deep Neural Network is trained in a semi-supervised manner to define an effective order-parameter for Gauge theory where a real order-parameter is not defined.

The study was made possible thanks to the GPUs provided by the ML INFN initiative.

A. Palermo, M.P. Lombardo *et al.* "Machine learning approaches to the QCD transition", Proceeding of LATTICE21

Stories of success [3]: X-rays to visible colors for CH

X-ray fluorescence spectroscopy widely used for Heritage Conservation and non-invasive probe of pictorial artworks.

Deep Neural Network models are trained to reconstruct the image from the XRF scan of the pixels.

Luca Giommi (INFN CNAF, Italy)

May 2023

CHEP 2023 - Norfolk, Virginia, USA