

9 May 2023 - CHEP

Dave Dykstra, Fermilab

Apptainer Without Setuid

A little Apptainer history

- Apptainer is the new name for the Singularity containerization project
- singularity-2 was written in C by Greg Kurtzer at LBNL in 2015, with many community contributions
 - Predated unprivileged user namespaces, but optional support for them was added when they arrived in RHEL 7
 - The High Throughput Computing (HTC) community already started using non setuid-root mode then
- Greg founded Sylabs in 2017, where singularity-3 was rewritten in Go with many new features
- In May 2020, Greg left Sylabs, taking the Singularity project leadership with him
 - Some core Singularity developers came with him to the new company he founded
 - Singularity was hosted in a new community organization, HPCng
- In May 2021, Sylabs left the project and created an open source fork, calling it SingularityCE
- In November 2021, the Singularity project joined the Linux Foundation, which required a name change, and Apptainer was chosen
 - Greg became one of 5 leaders on a Technical Steering Committee, and I am also on that committee
- Apptainer 1.0.0 released in March 2022
- Apptainer 1.1.0 released in September 2022, rootless by default

Rootless by default

- Setuid-root used to be required for mounting anything beyond bind mounts, but recent kernels allow FUSE mounts entirely in unprivileged user namespaces, without the setuid-root assistance of fusermount
 - Apptainer 1.1 added the ability to mount squashfs and ext3 filesystem types and overlayfs using FUSE, completely unprivileged
- Apptainer 1.1 has no setuid-root component in the main apptainer package
 - Can still use setuid-root, with optional apptainer-suid package or by compiling with a --with-suid option
- Apptainer normally uses only a single user id so it has no need for /etc/sub[ug]id mappings
 - Those mappings require an entry for every user, assigning them 64k otherwise unused ids
 - Can be challenging to manage on large clusters
 - Can result in odd behavior of creating files that are only accessible inside a container
 - The mappings require assistance from elevated-privilege programs, so Apptainer is more "rootless" than other container systems that call themselves rootless

Advantages and disadvantages of rootless

- Advantages of rootless:
 - Setuid-root notoriously difficult to secure
 - Linux kernel reviewed by far more security experts than a single application
 - The kernel can be attacked if unprivileged users can directly write filesystem data that is interpreted by kernel drivers
 - Published vulnerabilities get deemed low or medium severity because normally users can't modify the raw data, and so the vulnerabilities don't get patched quickly or at all on older distributions
 - Being entirely unprivileged allows full nesting of containers, even though Apptainer uses NO_NEW_PRIVS
- Disadvantages of rootless:
 - FUSE performance is likely worse (but not necessarily see next slide) than kernel filesystems
 - Security fixes to unprivileged user namespaces in the kernel require reboots
 - Almost all published vulnerabilities based on unprivileged user namespaces in the last few years were in combination with network namespaces, so we recommend disabling network namespaces if possible
 - Image encryption/decryption not supported in Apptainer 1.1 but is now in main branch and will be in 1.2
 - Supplementary groups are not available in an unprivileged user namespace
 - Some other little-used features not available without setuid-root

Unprivileged FUSE mounts

- Apptainer uses SIF files which include the container image in squashfs format, and mounts on the node
 - For HPC this is important to avoid high load on network filesystem's metadata server when many nodes start at once
 - HTC uses sandboxes on the CernVM FileSystem (CVMFS) which also avoids this problem plus has on-demand download
 - Apptainer 1.1 supports mounting the SIF partition with squashfuse_ll or squashfuse
 - Current release of squashfuse is single threaded, but Apptainer packages contain a multi-threaded patched version
 - <u>Measurements</u> of a HEP python-based container benchmark run times on a 16-core system (lower is better):
 - sandbox on local disk:6:21sandbox on lustre:6:32 (only one node, not parallel launches)kernel squashfs, sif on lustre:6:33standard squashfuse:41:33standard squashfuse_II:12:48multithreaded squashfuse_II:6:29sandbox on CVMFS:6:50 (warm cache)
- Optional overlays with ext3 filesystems or sandboxes are also supported rootless in Apptainer 1.1
 - Uses kernel overlayfs if the kernel allows it, otherwise fuse-overlayfs
 - ext3 filesystems are mounted with fuse2fs
 - Apptainer (and Singularity) does not require overlay to make missing bind points, for that it can use "underlay"

Unprivileged container builds

- Prior to Apptainer 1.1, building containers from definition files required either root or /etc/sub[ug]idbased --fakeroot
 - Building a container often requires multiple user ids for package installs, unlike a typical user application
- In Apptainer 1.1, the --fakeroot option is used by default when a non-root user tries to build from a definition file and is expanded in these ways:
 - 1. If the user is in /etc/subuid, Apptainer will use that method as before
 - 2. Else if unprivileged user namespaces are available, it will start a root-mapped user namespace
 - Equivalent to unshare -r
 - 3. Additionally, if the fakeroot command is available on the host, it will bind-map the command into the container and run the build commands under that
 - This command is LD_PRELOAD-based and reports success on system calls that don't really succeed, such as chown(), and tracks the changes that would have been made in case they are requested later
 - Bind-mapping is convenient and leaves the container image without a fakeroot package but can fail if the libc of the host and the image are not compatible. The user could instead run unshare -r apptainer and in the definition file install the fakeroot package and run the rest under the fakeroot command.
 - $\circ~$ The <code>fakeroot-sysv</code> command is considerably faster than and is preferred over the <code>fakeroot</code> command
 - 4. If unprivileged user namespaces are not available, but setuid-root and the fakeroot command are, it will run the build only under fakeroot

Unprivileged install

- Since apptainer-1.1 added dependencies of FUSE program packages, it became more of a challenge for unprivileged users to install
- Solution: install-unprivileged.sh script
 - Installs apptainer and all its dependencies from rpm package files that it downloads, into path of user's choice
 - Works on RHEL-based systems, Fedora, Debian, Ubuntu, and OpenSUSE
 - Works with any architecture supported by the Fedora/EPEL build system
 - Required changes to apptainer to enable relocation even when compiled with the —with-suid flag, as long as the setuid-root component isn't present
- This script is now used to install x86, arm, and ppc architectures into CVMFS at /cvmfs/oasis.opensciencegrid.org/mis/apptainer/bin/apptainer

Links

- Apptainer major announcements: https://apptainer.org/news
- Squashfuse performance: https://github.com/apptainer/apptainer/issues/665
- Short paper about the 1.1 release (a draft of what will become the CHEP paper): <u>https://arxiv.org/abs/2208.12106</u>

