ARMing up for HEP

Emanuele Simili, Gordon Stewart, Samuel Skipsey, Dwayne Spiteri, Albert Borbely, David Britton

 Image: Construct of Glasgow

Abstract: We present a case for ARM chips as an alternative to standard x86 at WLCG sites to help reduce power consumption ^[1]. New measurements are shown on the performance and energy consumption of two machines (one ARM ^[2] and one x86), that were otherwise similar in specification and cost. These new results include the energy-efficiency and speed of single- and multi-thread jobs; the effect of hyper-threading; and an initial look at clock throttling as a way of shaping power-load. **We observed significantly lower power consumption and often slightly better performance on the ARM machine** and, noting the increased availability of ARM software builds from all LHC experiments and beyond, we plan to install a 1920-core ARM cluster at our WLCG Tier2 site at Glasgow in the summer of 2023. This will enable testing, physics-validation, and eventually an ARM production environment that will inform and influence other WLCG sites in the UK and worldwide.

Methodology

Compared two almost identical servers (ARM & x86) of similar price:

AMD48c / AMD96ht: Single AMD EPYC 7003 series (GIGABYTE)

- CPU: x86 AMD EPYC 7643 48C/96HT @ 2.3GHz (TDP 225W)
- RAM: 256GB (16 x 16GB) DDR4 3200MHz
- HDD: 3.84TB Samsung PM9A3 M.2 (2280)

 ARM80c:
 Single socket Ampere Altra (GIGABYTE)

 CPU:
 ARM Q80-30 80C @ 3GHz (TDP 210W)

 RAM:
 256GB (16 x 16GB) DDR4 3200MHz

 HDD:
 3.84TB Samsung PM9A3 M.2 (2280)

Thread-Scan

Increase the number of HEP-Score containerized jobs executed simultaneously until the CPU is saturated:

Power measurement collected using IPMItools^[3] Readings were validated with external plugs.

(the difference has opposite sign for the two servers, strengthening our conclusion about the power efficiency of **ARM**)

Comparison extended to a dual **x86** compute node, representative of the Glasgow site (the node is part of a 2U/4-node chassis, but has a similar price/node as the machines above):

2xAMD32c / 2xAMD64ht: Dual Socket AMD EPYC 7513 series Processors (DELL)

- CPU: 2 * x86 AMD EPYC 7513, 32C/64HT @ 2.6GHz (TDP 200W)
- RAM: 512GB (16 x 32GB) DDR4 3200MHz
- HDD: 3.84TB SSD SATA Read Intensive

Score & Power

Monitor power usage while running the latest HEP-Score ^[4], in order to benchmark performance and power efficiency of **ARM** vs. **x86**:

Frequency Throttling

Reducing the CPU frequency could save power, but job will last longer:

The integrated energy used for a job varies modestly with clock speed but has a

minimum value at intermediate frequency settings on both machines.

Possible beneficial trade-off in throughput for an overall decreased power consumption?

Conclusions

Upcoming ARM farm at Glasgow site: we are about to get about two thousand Altra® ARM cores, donated by Ampere® (USA).

Outlook

An energy plug-in has been developed for the HEP-Score suite and will be included in the upcoming release. This will:

- provide a standard benchmarking tool to assess not only performances but also energy efficiency;
- allow Grid sites to make informed decision when purchasing new hardware.

Most LHC experiments have validated **ARM**

builds of their	
software, and	ATI
some non-LHC	CN
experiments are	ALI
moving too.	Bel

	ARM build	Physics Validated
ATLAS	yes	yes
CMS	yes	yes
ALICE	yes	yes
LHCb	yes	almost
Belle2	yes	no

They will become part of the advertised resources of our Tier2 site: a separate batch queue will be created to expose **ARM** resources on the Grid, such that they can be targeted by the experiments.

The availability of untapped ARM resources will further push experiments to develop/build the appropriate software to make the most use of them.

References

[1] E.Simili, et al., "Power Efficiency in HEP (x86 vs. ARM)", ACAT2022, https://indico.cern.ch/event/1106990/contributions/4991256/

- [2] Ampere® Altra® Multi Core Server Processors, <u>https://amperecomputing.com/processors/ampere-altra</u>
- [3] D.Laurie, "IPMItools: Intelligent Platform Management Interface", <u>https://github.com/ipmitool/ipmitool</u>
- [4] D.Giordano, et al. "HEPiX Benchmarking Solution for WLCG Computing Resources", Comput Softw Big Sci 5, 28 (2021).

