

Computing Activities at the Spanish Tier-1 and Tier-2s for the ATLAS **Experiment in the LHC Run3 period and towards High Luminosity (HL-LHC)**

CHEP23 - International Computing in High Energy & Nuclear Physics Conference, 8-12 May 2023, Norfolk Waterside Marriot, USA

S. González de la Hoz^{1*}, V. Acin^{3,4}, E. Acción^{3,4}, C. Acosta-Silva^{3,4}, J. Aparisi¹, P. Collado², J. Del Peso², A. Fernández Casani¹, J. Flix^{4,5}, C. García Montoro¹, G. Merino^{3,4}, A. Pacheco Pages^{3,4}, E. Planas^{3,4}, J. Sánchez¹, J. Salt¹, M. Villaplana¹ on behalf of the ATLAS Collaboration

¹Instituto de Física Corpuscular (IFIC), University of Valencia and CSIC, Valencia, Spain; ²Departamento de Física Teórica y CIAFF, Universidad Autónoma de Madrid, Spain; ³Institut de Física d'Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra (Barcelona), Spain; ⁴Port d'Informació Científica (PIC), Campus UAB, Bellaterra, Spain; ⁵Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (Ciemat), Madrid, Spain

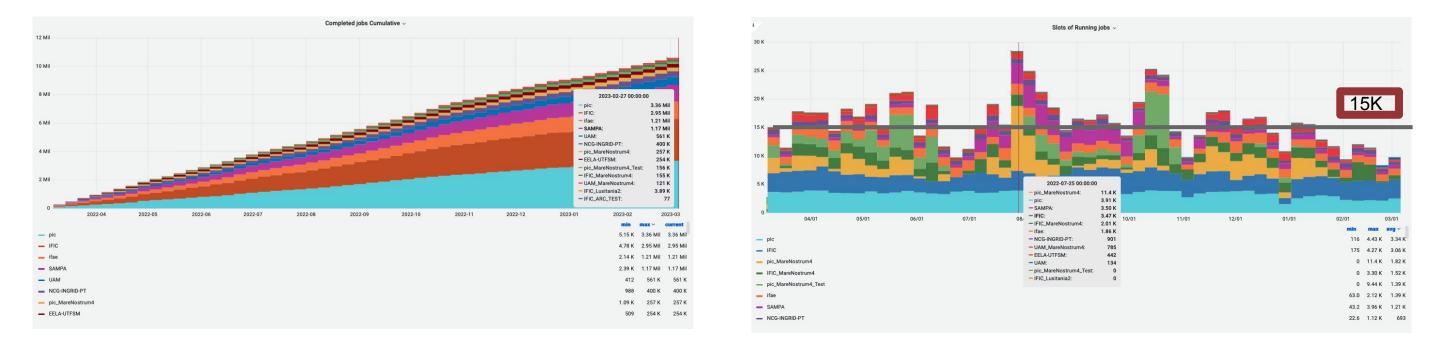
Corresponding author

2026

126.5

12.5

Spanish ATLAS Tier-1 & Tier-2s


Evolution of the Tiers Resources (Pledges CPU & Disk):

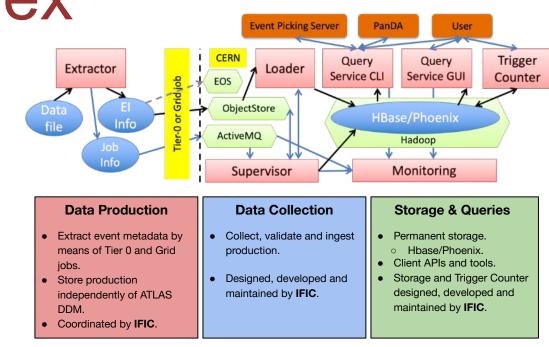
				1		7				
T1-ES	2022	2023	2024	2025	2026	T2-ES	2022	2023	2024	2025
CPU (kHS06)	52.0	57.2	60.0	81.1	103.6	CPU (kHS06)	63.5	69.9	79.6	99.0
Disk (PB)	4.6	5.4	6.5	8.4	10.2	Disk (PB)	5.7	6.7	7.9	10.2
Tape(PB)	10.9	14.1	17.9	25.6	32.4					

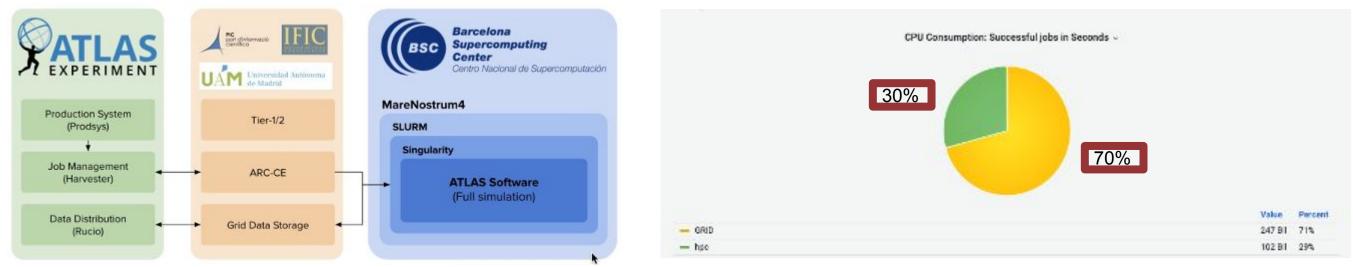
Present resources provided by the ES ATLAS Tier-1 and Tier-2s:

HPC and Grid ATLAS Tier-1 & Tier-2s jobs

- Grid jobs running in the last year in the Spanish cloud:
 - \succ Availability and reliability of the Spanish sites for the Run-3, have been, on average above 95%.
 - \succ More than 10 million jobs (analysis + production) completed.
 - \succ More than 15k slots of running jobs on average in the last year.

SITE	CPU (kHEP-SPEC06)	DISK (PB)	TAPE (PB)
PIC	57.20	6.2	15.8
IFIC	58.60	3.41	-
IFAE	17.50	1.60	-
UAM	16.57	1.08	-

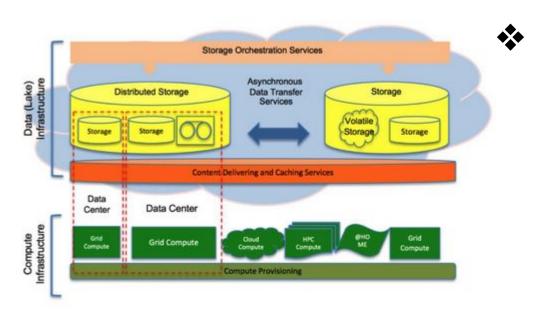

✤ Tier1: > PIC-Barcelona

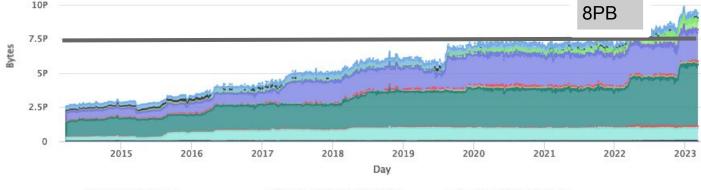

- ✤ A Federated Tier-2 (ATLAS): ➤ 60% IFIC-Valencia
 - > 25% IFAE-Barcelona
 - > 15% UAM-Madrid
- Integrated in the WLCG project (World Wide LHC Computing GRID) and strictly following the experiment computing model.
- We represent the 3% for Tier-2 and 4% for Tier-1 of the total Tier-2s and Tier-1s resources respectively.

ATLAS Event Index

A system designed to be a complete

- Use of the Mare Nostrum4 (HPC) by ATLAS Tier-1 and Tier-2s:
 - ➤ Using ARC-CE at PIC, IFIC and UAM to interconnect Mare Nostrum and ATLAS production system.
 - Only simulation workflow validated singularity containers, pre-placed at MareNostrum's GPFS.
 - Mare Nostrum accepts only SSH protocol for job submission and data \succ transfer.


- Proportion of HS06 (s) provided by GRID resources (yellow) and the \succ MareNostrum 4 HPC (green) in total contribution to the ATLAS computing by the Spanish cloud.
- > 30 million hours approved at Mare Nostrum4 every year by ATLAS through Spanish gateways, which corresponds to 50% of the simulation jobs assigned to Spain.


catalogue of ATLAS events, real and simulated data.

- Partitioned architecture, following data flow:
- > Data Production: extract event metadata from files produced at Tier-0 or on the Grid
- **Data Collection:** transfer EventIndex \succ information from jobs to the central servers at CERN
- Data Storage: provide permanent \succ storage for EventIndex data and fast access for the most common queries.
- ✤ Use Cases:
 - Event Picking. \succ
 - Production consistency checks (Duplicate event and overlap detection).
 - Trigger checks and event skimming
- The new system is in operation since last Spring 2022 and performing excellently.

Data Management

- Storage overview: **
 - More than 8 PB of ATLAS data stored in the Spanish Tier-1 and Tier-2 centers.

 IFAE_DATADISK IFIC-LCG2_CALIBDISK IFIC-LCG2_SCRATCHDISK UAM-LCG2_DATADISK 	 IFAE_LOCALGROUPDISK IFIC-LCG2_DATADISK PIC_DATADISK UAM-LCG2_LOCALGROUPDISK 	 IFAE_SCRATCHDISK IFIC-LCG2_LOCALGROUPDISK PIC_SCRATCHDISK UAM-LCG2 SCRATCHDISK
Spanish cloud moving to a	a network-ce	entric model

- (Datalake model):
- Fewer number of facilities operating storage services, less data replication.
- CPUs and storage not necessarily co-located: need to deliver the content over the WAN and/or cache it. A Datalake is feasible if the network speed is high (minimum 100 Gbps).

Analysis Facilities

- Guiding principle: Help physicist minimize time-to-insight, enabling iterative exploration of the data;
 - \succ In the future, when processing 10x lumi/evts, avoid physicists 10x waiting time!!
 - \succ Boost productivity and competitiveness of our physics communities.
- ✤ Key features:
 - \succ Local acces to the reduced data samples (e.g. NanoAOD) with low latency from compute.
 - \succ Processing resources available with capacity and priority (CPUs, GPUs, Memory).
 - Efficient and elastic infrastructure (e.g scheduling based on HTCondor) with dynamic expansion to HPC/Cloud to absorb peaks. Enhanced support to software tools (ROOT + Python ecosystem). Enable and encourage use of common repositories of code for analysis \succ routines/workflows (e.g. analysis tree). Expert data/code manager: critical liaison role (not a final user, nor an infrastructure \succ expert, however facilitating technology/access).
- Tipically consist of:
 - \succ Dedicated storage resources (of order of several 100s of TB).
 - \succ CPU resources used interactively and/or via a batch system (mostly) HTCondor).
 - Future User Interface (UI) to be designed in a flexible way, with user-friendly interfaces that do not discourage users.
 - IFAE: Jupyter Notebook instances can be spawned via a dedicated portal.
 - SW delivery mostly via CVMFS with increasing presence of containers.
 - GPU resources available, but often not dedicated. \succ
 - IFIC: ARTEMISA infrastructure (<u>http://artemisa.ific.uv.es</u>).
 - > Network:
 - LAN of multiple 10 Gbps to support the intense data throughput.
 - WAN of 100 Gbps connectivity with the WLCG dedicated network for data lake access.

Conclusions and Perspectives

- The ATLAS Spanish Tier-1 and Tier-2s have more than 18 years of experience in the deployment of LHC Computing components and their successful operations.
- The sites are actively participating in the evolution of the Computing Models by the integration and update of ingredients/tools.

Ciemat

- The HL-LHC provides unprecedented opportunities for particle physics, yet its implementation poses technical and logistical challenges.
- An essential plan for upgrading computing infrastructure and optimizing data analysis methods is necessary to fully realize HL-LHC's potential and overcome its hurdles.

Funded by MICINN under contracts

(PID2019-110942RB-C22, PID2019-104301RB-C21, PID2019-104301RB-C22)