Building a fully cloud-native ATLAS Tier 2 on Kubernetes

Ryan Taylor, Jeff Albert, Fernando Harald Barreiro Megino on behalf of the ATLAS Computing Activity
Background

CHEP 2019 presentation

Using Kubernetes as an ATLAS computing site

Fernando Barreto Magino, Jeffrey Ryan Albert, Frank Berghaus, Danika MacDonell, Tadashi Maeno, Ricardo Brito Da Rocha, Rolf Seuster, Ryan P. Taylor, Ming-Jyun Yang on behalf of the ATLAS experiment

CHEP 2019, Adelaide, Australia

CA-VICTORIA-WESTGRID-T2 uses Kubernetes for container-native batch computing. Harvester submits ATLAS grid jobs to k8s API, which runs them as pods. No traditional batch system or Compute Element.
Why Kubernetes?

• We are a cloud site

Arbutus Science Cloud

• Cloud + k8s provides:
 • Flexible & dynamic infrastructure
 • Resilience and automated remediation
 • Rapid application deployment
 • Application lifecycle management
 • Horizontal scalability
The eventual goal: a fully k8s-native T2
Installable with Helm

- Helm: application manager for Kubernetes
 - One command to install/upgrade everything
 - Comprehensive configuration via one YAML file
- `helm install T2Site`
 - (K)APEL accounting done
 - frontier-squid done
 - compute (security rules, Harvester setup) done (static YAML)
 - EOS SE in progress
 - CVMFS-CSI optional
- Compute Element built-in
- Batch system built-in
KAPEL

Container-native APEL accounting for Kubernetes

- Standard k8s add-ons do most of the work
 - k8s cron job instead of APEL node
 - Prometheus instead of MySQL DB for data collection and storage
 - PromQL for data querying, analytics
 - kube-state-metrics (KSM) instead of batch log parser
 - Only needed to write ~200 lines of python (and some YAML)
- Available as Helm chart: https://github.com/rptaylor/kapel
Frontier-squid
Deployed on Kubernetes

• Using frontier-squid Helm chart from CERN ScienceBox
 • Simple, lightweight, container-native approach
 • Trivial to scale, with automatic load-balancing and failover

• UVic contributed enhancements
 • Run as unprivileged squid user #61
 • Allow configuration of service details #63
 • Support for priorityClass and pod resource requests/limits #64
 • Send access logs to stdout #69
 • Configurable ACL activation #72
 • Harmonize configuration with upstream package #73
 • Add backup readiness probe URL for redundancy #74
 • Update ACLs for Frontier servers #78
 • Expand list of safe ports #81

• Suitable for new CVMFS proxy sharding feature

Many thanks to Enrico Bocchi!
EOS SE on k8s with CephFS

- Physical consolidation: all storage on Ceph
- Logical consolidation: services on k8s
- EOS can be installed on k8s via Helm chart
 - reproducible, single step deployment
 - easier to manage and maintain
 - easy to set up another instance, e.g. for dev
- Opportunity: direct data access for jobs on CephFS
EOS SE on k8s with CephFS

- Enhancements of Helm chart for T2 use case
 - VOMS authz/authn
 - Set up host certs as secrets, fetch-crl, CAs, etc.
- Kubernetes network architecture for external access
 - A LoadBalancer Service for each storage pod (FST)
- CephFS bug encountered: 55090
 - Ceph fixes: #46902 #46905
Summary

• CA-VICTORIA-WESTGRID-T2 running ~8K cores of ATLAS compute jobs on Kubernetes
• APEL accounting and Frontier-squid also deployed on Kubernetes
• Development and integration for EOS SE
• Enable streamlined replicable deployment of a full ATLAS T2
CVMFS proxy sharding with k8s Squids

- New feature in CVMFS v2.10 to improve cache hit rates
- CVMFS understands round-robin DNS
 - dereferences multiple A records
- Solution using k8s Services: headless ClusterIP

```yaml
service:
  clusterIP: None
```

- Should decrease CVMFS_DNS_MIN_TTL to a small value
 - CVMFS default is 1 min
 - K8s deployment upgrade could be < 1 min (and DNS TTL is 5 s)
 - Details: #97
Ingress and LBaaS

• Initial basic approach used keepalived and nginx-ingress to receive traffic from outside world into clusters
• Migrated to PureLB and Traefik
 • More maintainable/manageable, via Helm charts
 • Cohesive access to dashboards etc across all clusters
• PureLB: like MetalLB but simpler, lightweight
 • relies on Linux network stack of host
 • Programmable (LB -> LBaaS)
• Traefik Ingress controller
 • Widely used, full featured, nice web UI, CRDs
 • Better TCP and UDP support