Building a fully cloud-native ATLAS Tier 2 on Kubernetes

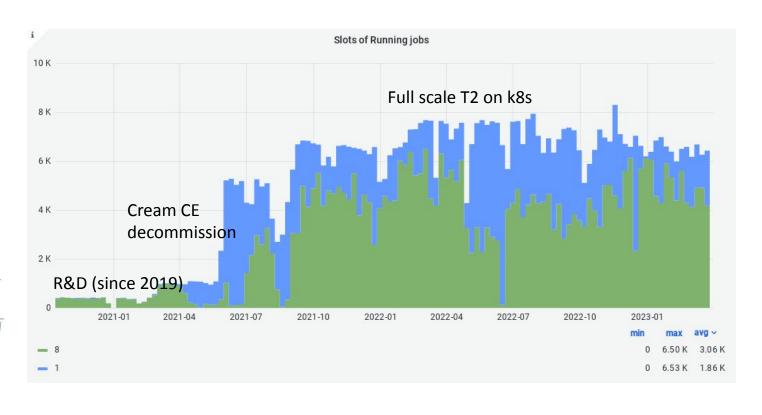
Ryan Taylor, Jeff Albert, Fernando Harald Barreiro Megino on behalf of the ATLAS Computing Activity

Background

CHEP 2019 presentation

Using Kubernetes as an ATLAS computing site

<u>Fernando Barreiro Megino</u>, Jeffrey Ryan Albert, Frank Berghaus, Danika MacDonell, Tadashi Maeno, Ricardo Brito Da Rocha, Rolf Seuster, Ryan P. Taylor, Ming-Jyuan Yang on behalf of the ATLAS experiment CHEP 2019, Adelaide, Australia



CA-VICTORIA-WESTGRID-T2 uses Kubernetes for container-native batch computing. Harvester submits ATLAS grid jobs to k8s API, which runs them as pods. No traditional batch system or Compute Element.

Why Kubernetes?

We are a cloud site

Arbutus Science Cloud

44000 vCPUs

17 PB

- Cloud + k8s provides:
 - Flexible & dynamic infrastructure
 - Resilience and automated remediation
 - Rapid application deployment
 - Application lifecycle management
 - Horizontal scalability

VMs as pets

Openstack

VMs as cattle

Openstack + ???

containers as cattle

Openstack + k8s

The eventual goal: a fully k8s-native T2

Installable with Helm

- Helm: application manager for Kubernetes
 - One command to install/upgrade everything
 - Comprehensive configuration via one YAML file

- (K)APEL accounting
- frontier-squid
- compute (security rules, Harvester setup)
- EOS SE
- CVMFS-CSI
- Compute Element
- Batch system

done

done

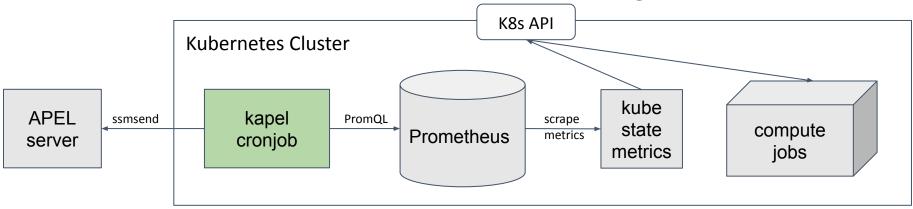
done (static YAML)

in progress

optional

built-in

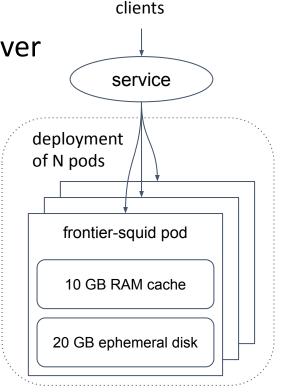
built-in



FREE

KAPEL

Container-native APEL accounting for Kubernetes

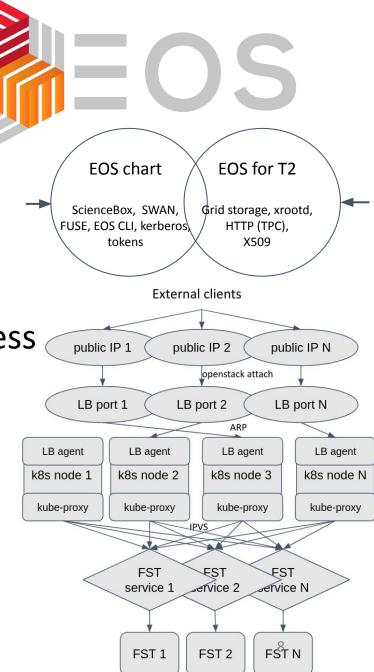

- Standard k8s add-ons do most of the work
 - k8s cron job instead of APEL node
 - Prometheus instead of MySQL DB for data collection and storage
 - PromQL for data querying, analytics
 - kube-state-metrics (KSM) instead of batch log parser
 - Only needed to write ~200 lines of python (and some YAML)
- Available as Helm chart: https://github.com/rptaylor/kapel

Frontier-squid

Deployed on Kubernetes

- Using frontier-squid <u>Helm chart</u> from CERN ScienceBox
 - Simple, lightweight, container-native approach
 - Trivial to scale, with automatic load-balancing and failover
- UVic contributed enhancements
 - Run as unprivileged squid user #61
 - Allow configuration of service details #63
 - Support for priorityClass and pod resource requests/limits #64
 - Send access logs to stdout #69
 - Configurable ACL activation #72
 - Harmonize configuration with upstream package #73
 - Add backup readiness probe URL for redundancy #74
 - Update ACLs for Frontier servers #78
 - Expand list of safe ports #81
- Suitable for new CVMFS proxy sharding feature

EOS SE on k8s with CephFS



- Physical consolidation: all storage on Ceph
- Logical consolidation: services on k8s
- EOS can be installed on k8s via Helm chart
 - reproducible, single step deployment
 - easier to manage and maintain
 - easy to set up another instance, e.g. for dev
- Opportunity: <u>direct data access for jobs</u> on CephFS

EOS SE on k8s with CephFS

- Enhancements of Helm chart for T2 use case
 - VOMS authz/authn
 - Set up host certs as secrets, fetch-crl, CAs, etc.
- Kubernetes network architecture for external access
 - A LoadBalancer Service for each storage pod (FST)
- CephFS bug encountered: <u>55090</u>
 - Ceph fixes: #46902 #46905

Summary

- CA-VICTORIA-WESTGRID-T2 running ~8K cores of ATLAS compute jobs on Kubernetes
- APEL accounting and Frontier-squid also deployed on Kubernetes
- Development and integration for EOS SE
- Enable streamlined replicable deployment of a full ATLAS T2

CVMFS proxy sharding with k8s Squids

- New feature in CVMFS v2.10 to improve cache hit rates
- CVMFS understands round-robin DNS
 - dereferences multiple A records
- Solution using k8s Services: <u>headless ClusterIP</u>

```
service:
clusterIP: None
```

- Should decrease CVMFS_DNS_MIN_TTL to a small value
 - CVMFS default is 1 min
 - K8s deployment upgrade could be < 1 min (and DNS TTL is 5 s)
 - Details: #97

Ingress and LBaaS

- Initial basic approach used keepalived and nginx-ingress to receive traffic from outside world into clusters
- Migrated to PureLB and Traefik
 - More maintainable/manageable, via Helm charts
 - Cohesive access to dashboards etc across all clusters
- PureLB: like MetalLB but simpler, lightweight
 - relies on Linux network stack of host
 - Programmable (LB -> LBaaS)
- Traefik Ingress controller
 - Widely used, full featured, nice web UI, CRDs
 - Better TCP and UDP support

PureLB