Overcoming obstacles to IPv6 on WLCG

David Kelsey
RAL, STFC, UK Research and Innovation
(on behalf of the HEPiX IPv6 Working Group)

CHEP2023, Norfolk VA, USA, 11 May 2023
On behalf of all members of the HEPiX IPv6 working group - (many thanks all!)

M Babik (CERN), M Bly (RAL), N Buraglio (ESnet), T Chown (Jisc), D Christidis (CERN/ATLAS), J Chudoba (FZU Prague), P Demar (FNAL), J Flix (PIC), C Grigoras (CERN/ALICE), B Hoeft (KIT), H Ito (BNL), D P Kelsey (RAL), E Martelli (CERN), S McKee (U Michigan), C Misa Moreira (CERN), R Nandakumar (RAL/LHCb), K Ohrenberg (DESY), F Prelz (INFN), D Rand (Imperial), A Sciabà (CERN/CMS), T Skirvin (FNAL)

(underlined authors are attending CHEP2023)

• Many more in the past, and members join/leave from time to time

• many thanks also to WLCG operations, WLCG sites, LHC experiments, networking teams, monitoring groups, storage developers…
Outline

• IPv6 traffic growth
• The HEPiX IPv6 working group
• Drivers for IPv6
• Deployment of IPv6/IPv4 dual-stack storage
• The good news - Tier-1/Tier-2 storage, LHCOPN & LHCONE
• Plans for IPv6-only WLCG
• Obstacles to IPv6 on WLCG
 • and overcoming those obstacles
• Summary
IPv6 traffic continues to grow

Google

WLCG Data Transfers
The HEPiX IPv6 Working Group

- In 2010-11
 - some HEPiX sites running out of IPv4 addresses
 - IANA projecting imminent IPv4 address exhaustion
 - Moving to support IPv6 would not be fast - better start now!
- **Phase 1** - 2011-2016 - full analysis, investigations, ran a testbed
 - lots of work by storage developers to be IPv6-capable
- **Phase 2** - 2017-2023 - deploy dual-stack storage on WLCG
 - in production
- **Phase 3** - 2019-onwards - plan for IPv6-only
 - investigate and fix reasons for obstacles to deployment of IPv6

https://www.hepix.org/e10227/e10327/e10326/
https://indico.cern.ch/category/3538/ (meetings)
Drivers for use of IPv6

• Sites running out of routable IPv4 addresses (avoid NAT)
 • Use IPv6 addresses for external public networking
• To be ready to support use of IPv6-only CPU clients
• There are other drivers for IPv6:
 • scitags.org – packet marking (in header of IPv6 packets)
 • Research Networking Technical Working Group (RNTWG)
 • USA Federal Government – directive on “IPv6-only” (Nov 2020)
 • multiONE (several LHCONE’s for different communities)
 • either, the services must be in different IP LANs (suggests use of IPv6)
 • or use the scitags in IPv6 header flow label for policy based routing
IPv6/IPv4 deployment at WLCG Tier-1/2 sites

- Tier-1 complete
- Tier-2 deployment from Nov17
- *(status)* shows >91% T2 sites
 - 93% of Tier-2 storage is dual stack

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Fraction of T2 storage accessible via IPv6</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALICE</td>
<td>90%</td>
</tr>
<tr>
<td>ATLAS</td>
<td>90%</td>
</tr>
<tr>
<td>CMS</td>
<td>96%</td>
</tr>
<tr>
<td>LHCb</td>
<td>100%</td>
</tr>
<tr>
<td>Overall</td>
<td>93%</td>
</tr>
</tbody>
</table>
Importance of monitoring

• We must monitor
 • deployment of IPv6-capable services
 • fraction of data transfers taking place over IPv6
• Monitoring implementations used for IPv6
 • perfSONAR
 • ETF - experiment test framework
 • FTS (File Transfer Service)
 • Network utilisation and traffic plots
 • e.g. IPv6 versus IPv4 on LHCOPN/LHCONE
• But in recent years some existing monitoring stopped working
 • FTS over WebDAV not tracking IPv6 (GSIFTP and SRM was instrumented)
 • work is ongoing to fix this problem
Good news (IPv6 on WLCG) after removing several “obstacles” during the last year

LHCOPN network (at CERN) ~95% IPv6 last 30 days

Storage - Tier-1 (100%) and Tier-2 (93%)

LHCONE network at CESNET (CZ)
- last 30 days
 Ingress ~93% IPv6
 Egress ~90% IPv6
Good news (2) - %IPv6 on LHCONE (Imperial College London)

dCache storage preference set to IPv6

Since Feb 2022
~90% IPv6
IPv6-only on WLCG (CHEP2019)
https://doi.org/10.1051/epjconf/202024507045

- The end point of the transition from IPv4 is an IPv6-only WLCG core network
- To simplify operations
 - Dual-stack infrastructure is the most complex
 - Dual-stack has more security threat vectors
- Large infrastructures (e.g. Facebook, Microsoft,...) use IPv6-only internally
- The goal we are still working towards
 - “IPv6-only” for the majority of WLCG services and clients
 - With ongoing support for IPv4-only clients where needed/possible
- Timetable to be defined
“Obstacles” to IPv6

There are many reasons stopping the full use of IPv6/IPv4

• Dual stack is an essential step on the journey to IPv6-only

The Obstacles that we have been addressing:

1. **WLCG Sites not yet deployed IPv6 networking** ~done
2. **Sites have IPv6 but Tier-2 has no dual-stack storage** ~done
3. **IPv6 monitoring not available or broken** see next slide
4. **Service is dual-stack but IPv4 being used** see next slide
 • no time to describe all the obstacles we found and fixed
Some obstacles fixed (#3 and #4)

Data transfers into USA/ATLAS Great Lakes Tier 2 (AGTL2)
Found to use IPv4 even when both ends dual-stack (dCache/WebDAV)
java.net.preferIPv6Addresses (default: false) - Now set to “true”
Fixed at 17:00 on 14 Feb 2022 (confirmed in the plot!)
This fix is essential for all dCache instances - fixed in v7.2.11

Some FTS monitoring now able to distinguish IPv6 from IPv4
ATLAS & CMS HTTP transfers into CERN (last year)
– IPv6 showing from August 2022 onwards
Obstacles to IPv6 - to be addressed

5. Non-storage services not yet dual-stack
 a. ~60% of all WLCG services are dual-stack today

6. WLCG client CPU (worker nodes, VMs, containers) some IPv4-only

7. Services/clients outside of WLCG Tier-1/Tier-2 not yet considered
 a. Tier-3, Public/Commercial Clouds, Analysis facilities, Experiment portals…

8. Use of new or evolving technologies not yet tested or tracked
 a. New CPU architectures (GPU, non-x86, …), container orchestration, …

9. “People” can be the obstacle
 a. they do not consider use of IPv6 or refuse to deploy!

All of these will be addressed by the working group
Summary

• WLCG is ready to support use of IPv6-only clients
• Tier-1s: all have production storage accessible over IPv6
• Tier-2s: 93% storage is IPv6 capable
• Monitoring data transfers is essential - was broken and being fixed
 • Traffic on LHCOPN and LHCONE is 90-95% IPv6 (after obstacles removed)
• We continue to address more obstacles to IPv6 in WLCG
 • To enable move to IPv6-only services

• Message to WLCG sites and LHC experiments:
 • Deploy dual-stack on all services & CPU clients and prefer IPv6
• Message to new research communities - build on IPv6 from start
Questions, Discussion?