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• Data Analysis at the LHC is evolving

• Very compact data formats (NanoAOD, Physlite) allow to replicate years of data on a single facility

• New analysis frameworks (Coffea, RDataFrame) allow to use columnar data analysis concepts on both 

local and distributed resources

• Services like Xcache or ServiceX can significantly reduce I/O latency and save processing time

• Interactive analysis using notebooks adds extra convenience

• Two different types of resources

• High performance nodes (many cores, lots of SSD storage) are used for interactive work

• Analysis facilities as dedicated clusters with software and services to enable interactive distributed 

analysis

• CERN providing the former to experiments, and evaluating choices for the latter

• A working group on analysis at CERN started in 2021 and produced a final report

Introduction
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https://zenodo.org/record/6337728


Excerpts from the 2022 studies

Interactive analysis still very small fraction
Average read rates very low and dominated by small reads

Reads from memory caches but < 1% of accesses

EOS capable of hundreds of MB/s

Concurrent access to same HDD is the norm

Batch analysis I/O not intensive, no bottlenecks in EOS

Additional caching layers not needed

Experiment workloads used as I/O benchmarks

• ATLAS top-xaod: very low I/O, storage has no 

impact

• CMS aggregate gradients: multithreaded, 

significant I/O but high read rates, HDD-based 

Xcache already optimal

• CMS skimmer: low I/O, no cache needed

Studied saturation for a single HDD of Xcache

Number of clients supported by the storage system heavily 

dependent on the application

Optimal storage architecture needs to be tuned as a function 

of the applications

Conclusions
• Access to local storage is best

• Xcache is not always useful, and HDDs may be 

enough

• Scalability depends heavily on workload

• Infrastructure at CERN can handle well analysis

• EOS is operating well below saturation

• Performance studies are important and should 

continue
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• Goal is to collect analysis workloads and tools to measure I/O performance in different storage 
configurations and levels of parallelism

• The scope is CERN but it could be easily extended

• The final objective is to optimize resource allocation

• Several workloads available now or soon

• ROOT’s rootreadspeed I/O benchmark

• ROOT’s RDataFrame benchmark

• IRIS-HEP Analysis Grand Challenge, both Coffea and RDataFrame implementations

• A real CMS analysis using Coffea by A. Novak

• A real CMS analysis using RDF by T. Tedeschi

• The list will expand! Please contact us if you want to contribute

• Almost all input data is in TTree format

• RNTuple is expected to show different behavior

Current work
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• High performance client node

• Two AMD EPYC 7702 (128 cores)

• 1 TB of RAM

• 20 SSD of 4 TB each (of which 10 in RAID0)

• 100 Gb/s connection

• Two Xcache nodes

• Two Intel Xeon Silver 4216 (32 cores)

• 192 GB of RAM

• One with ~ 1 PB in HDD, the other with 32 TB in 
SSD

• Storage systems

• EOS at CERN (EOSCMS and CERNBOX)

• Xrootd server at UNL

Testbed setup and metric measurement

• HSF PrMon tool to measure performance

• Wallclock time

• CPU time

• Read bytes (from storage or network)

• Time spent in data processing

• CPU (pseudo) efficiency

• CPU time / (wallclock time × workers)

• Average read data rate

• read bytes / processing time
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• Simplified analysis from CMS used as 
technical demonstrator in IRIS-HEP

• Input dataset 3.6 TB, 2300 ROOT files, 1.5 

GB/file consisting of CMS 2015 Open Data

• Columnar analysis paradigm

• Distributed using a map-reduce concept

• Original Coffea implementation

• ROOT-less, parallelism via Python futures or 

Dask

• RDataFrame port (talk)

• ROOT-based, parallelism via implicit 

multithreading, Dask and other

Analysis Grand Challenge ttbar analysis

• Measure performance and scalability

• Local parallelism on client node

• Data read from local node vs. directly from EOS 

via xrootd vs. via an XCache instance

• NOT a comparison between Coffea and RDF

• Simply, different workloads with different 

behaviors
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• Scalability is excellent

• Some bottleneck appears for high numbers of 

workers

• Overcommitting does not help for Coffea, but it 

increases throughput for RDF

• Indication that Coffea is more CPU-

constrained

• The CPU efficiency comparably high

• I/O not a strong bottleneck

• Local, fast SSD storage is always going 
to work well

• Aggregate read rates up to 3 GB/s

Local access
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• Scalability still good when parallelism is 
via multiprocess

• RDF implicit multithreading does not perform well 

with xrootd and many threads

• RDF via Dask is multiprocess, scales better

• CPU efficiency practically constant 
around 60% with multiprocess parallelism

• I/O time is not negligible anymore but no 

bottlenecks

• Two EOS instances tested

• EOSCMS by default, but CERNBOX produces 

similar (slightly worse) results

Direct access to EOS
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• Compared performance of direct access to 
Nebraska and CERN, cold cache and warm 
cache

• Performance results

• A cold cache is slower than direct access!

• Due to sparse file access and network latency

• Multiprocess scales very well

• HDD XCache almost as good as SSD XCache

• RDF multithreaded scales very poorly “out of the box”

• All connections multiplexed into one ⇒ bottleneck!

• SDD XCache helps a lot, but scalability is still broken

HDD/SDD-based XCache

Coffea + HDD XCache: wallclock time (s)

Site Direct Cold Warm

Nebraska 442 ± 16 608 133 ± 6

EOSCMS 139 ± 8 325 137 ± 3

RDF MT + HDD XCache: wallclock time (s)

Site Direct Cold Warm

Nebraska 5470 ± 910 18841 1531 ± 78

EOSCMS 323 ± 95 8149 1558 ± 400
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• Scalability with ROOT multithreading and 
XCache can be improved

• XRD_PARALLELEVTLOOP=10 on the client 
largely improves Xrootd performance

• Prevent the connection multiplexing by adding 
different client names to the file names
root://client1@eoscms.cern.ch//eos/myfile.root

• Enormous impact when reading from 
XCache

• Obvious as it is a single server and multiplexing a 
big bottleneck

• Effect negligible when reading from EOS

• Files already spread over hundreds of disk 
servers, multiplexing irrelevant

RDF + Xrootd performance optimization
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• rootreadspeed CLI tool

• Created exactly to identify I/O bottlenecks when 

reading ROOT files locally or via Xrootd

• Reading only the branches used by the AGC RDF 

workload for comparison purposes

• Excellent performance with XCache

• To be better understood

• EOS performance and scalability similar 
to EOS RDF

• About 1.5 faster as it does only the I/O

Synthetic ROOT I/O performance
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• Real world Higgs analysis from A. Novak

• First observation of ggH → cc

• Running on NanoAOD

• Tests using 2017 data, 6 TB, average file size 160 
MB

• Performance comparison in different 
scenarios

• Local access

• Direct EOS access

• XCache

CMS NanoAOD analysis using Coffea

Wallclock time (h) CPU efficiency (%) Read rate (MiB/s)

Local access 4.1 103 270

Direct EOS access 4.7 87 34.5

Cold XCache 4.6 89 34.7

Warm XCache 4.8 82 34.1

• Results for 64 workers

• CPU limited

• Caching layer irrelevant

• I/O is modest
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• Several sample analyses using direct access with TTree and RNTuple

• Also support for RDataFrame and implicit multi-threading (prmon readings not conclusive) 

• ATLAS: H --> gg 2020 open data (cf. tutorial df104). Medium dense reading (~25%, 12/81 features)

• TTree: 9.9GB, RNTuple: 4.4 GB 

• CMS: 2019 ttjet nanoAOD (cf. tutorial df102). Sparse reading (<1%, 6/1479 features)

• TTree: 20GB ,  RNTuple: 13.5GB 

• Lhcb: LHCb run 1 open data (B mass spectrum). Dense reading (>75%, 18/26 features)

• TTree: 5.3 GB , RNTuple: 5.3 GB

• H1: ROOT's H1 standard analysis (cf. df101 tutorial).

• TTree: 13.3 GB , RNTuple:  10 GB Medium dense reading (~10%, 16/152 features)

• Measurements with different storage setups (PrMon and internal metrics (too many to show..))

Tests with J. Blomer’s Virtual Probe Station :
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https://github.com/jblomer/iotools


• Cold HDD cache and direct EOS are close

• Warm SSD cache is on par with local SSDs

• Data formats matter, little gain from 
concurrency

• TTree is sensitive to external activities 

• RDataFrame shows similar patterns, profits 
from using multiple cores up to 50

• For RNTuples on SSDs, RDataFrame is, 
using 40 cores, more than twice as fast as 
“classic” processing
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• More workloads in the pipeline

• T. Tedeschi’s CMS analysis using RDataFrame

• New version of the AGC workload using NanoAOD

• Obtain workloads from other LHC experiments

• Scale out tests to batch using Dask

• Simulate multiuser environment

• Provide documentation to allow others to run the same tests

• With some limitations, e.g. only Open Data datasets

Future plans
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• Designing an analysis facility requires to test several workloads in several hardware, client and 
server configurations

• Compared performance and scalability under different (favorable) scenarios

• A high-performance node with no other users offers the maximum obtainable throughput per core

• Direct access to EOS comparably performant, no server-side bottlenecks observed

• It is a shared facility, busy with other workloads, but performance is rather consistent

• A caching layer (XCache) does not provide additional benefits to direct access to EOS

• SSDs are better but not necessarily much better

• It will be shared in production

• Quasi-real workloads like the AGC ones are a very valuable tool, but real workloads are also essential for testing

• Plans to extend the testing and analysis activity

• New workloads

• New ideas

• Will work on making RDF/XrdCl multithreading more scalable without the need for additional tuning

Conclusions
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• Analysis for LHC experiments at CERN: https://zenodo.org/record/6337728

• PrMon: https://github.com/HSF/prmon

• Analysis Grand Challenge: https://github.com/iris-hep/analysis-grand-challenge

• Coffea: https://coffeateam.github.io/coffea/

• AGC RDF implementation: https://github.com/andriiknu/RDF/

References
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Backup slides
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Coffea: all configurations
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RDF: all non-Xcache configurations
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RDF: all XCache configurations
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