
I/O performance studies of analysis workloads on
production and dedicated resources at CERN

A. Sciabà, J. Blomer, P. Canal, D. Duellmann, E. Guiraud, A. Naumann, V.E. Padulano, B. Panzer-
Steindel, A.J. Peters, M. Schulz, D. Smith

CHEP2023, 8-12 May 2023

• Data Analysis at the LHC is evolving

• Very compact data formats (NanoAOD, Physlite) allow to replicate years of data on a single facility

• New analysis frameworks (Coffea, RDataFrame) allow to use columnar data analysis concepts on both

local and distributed resources

• Services like Xcache or ServiceX can significantly reduce I/O latency and save processing time

• Interactive analysis using notebooks adds extra convenience

• Two different types of resources

• High performance nodes (many cores, lots of SSD storage) are used for interactive work

• Analysis facilities as dedicated clusters with software and services to enable interactive distributed

analysis

• CERN providing the former to experiments, and evaluating choices for the latter

• A working group on analysis at CERN started in 2021 and produced a final report

Introduction

2

https://zenodo.org/record/6337728

Excerpts from the 2022 studies

Interactive analysis still very small fraction
Average read rates very low and dominated by small reads

Reads from memory caches but < 1% of accesses

EOS capable of hundreds of MB/s

Concurrent access to same HDD is the norm

Batch analysis I/O not intensive, no bottlenecks in EOS

Additional caching layers not needed

Experiment workloads used as I/O benchmarks

• ATLAS top-xaod: very low I/O, storage has no

impact

• CMS aggregate gradients: multithreaded,

significant I/O but high read rates, HDD-based

Xcache already optimal

• CMS skimmer: low I/O, no cache needed

Studied saturation for a single HDD of Xcache

Number of clients supported by the storage system heavily

dependent on the application

Optimal storage architecture needs to be tuned as a function

of the applications

Conclusions
• Access to local storage is best

• Xcache is not always useful, and HDDs may be

enough

• Scalability depends heavily on workload

• Infrastructure at CERN can handle well analysis

• EOS is operating well below saturation

• Performance studies are important and should

continue

3

• Goal is to collect analysis workloads and tools to measure I/O performance in different storage
configurations and levels of parallelism

• The scope is CERN but it could be easily extended

• The final objective is to optimize resource allocation

• Several workloads available now or soon

• ROOT’s rootreadspeed I/O benchmark

• ROOT’s RDataFrame benchmark

• IRIS-HEP Analysis Grand Challenge, both Coffea and RDataFrame implementations

• A real CMS analysis using Coffea by A. Novak

• A real CMS analysis using RDF by T. Tedeschi

• The list will expand! Please contact us if you want to contribute

• Almost all input data is in TTree format

• RNTuple is expected to show different behavior

Current work

4

• High performance client node

• Two AMD EPYC 7702 (128 cores)

• 1 TB of RAM

• 20 SSD of 4 TB each (of which 10 in RAID0)

• 100 Gb/s connection

• Two Xcache nodes

• Two Intel Xeon Silver 4216 (32 cores)

• 192 GB of RAM

• One with ~ 1 PB in HDD, the other with 32 TB in
SSD

• Storage systems

• EOS at CERN (EOSCMS and CERNBOX)

• Xrootd server at UNL

Testbed setup and metric measurement

• HSF PrMon tool to measure performance

• Wallclock time

• CPU time

• Read bytes (from storage or network)

• Time spent in data processing

• CPU (pseudo) efficiency

• CPU time / (wallclock time × workers)

• Average read data rate

• read bytes / processing time

5

• Simplified analysis from CMS used as
technical demonstrator in IRIS-HEP

• Input dataset 3.6 TB, 2300 ROOT files, 1.5

GB/file consisting of CMS 2015 Open Data

• Columnar analysis paradigm

• Distributed using a map-reduce concept

• Original Coffea implementation

• ROOT-less, parallelism via Python futures or

Dask

• RDataFrame port (talk)

• ROOT-based, parallelism via implicit

multithreading, Dask and other

Analysis Grand Challenge ttbar analysis

• Measure performance and scalability

• Local parallelism on client node

• Data read from local node vs. directly from EOS

via xrootd vs. via an XCache instance

• NOT a comparison between Coffea and RDF

• Simply, different workloads with different

behaviors

6

https://github.com/iris-hep/analysis-grand-challenge
https://coffeateam.github.io/coffea/
https://indico.jlab.org/event/459/contributions/11582/

• Scalability is excellent

• Some bottleneck appears for high numbers of

workers

• Overcommitting does not help for Coffea, but it

increases throughput for RDF

• Indication that Coffea is more CPU-

constrained

• The CPU efficiency comparably high

• I/O not a strong bottleneck

• Local, fast SSD storage is always going
to work well

• Aggregate read rates up to 3 GB/s

Local access

7

• Scalability still good when parallelism is
via multiprocess

• RDF implicit multithreading does not perform well

with xrootd and many threads

• RDF via Dask is multiprocess, scales better

• CPU efficiency practically constant
around 60% with multiprocess parallelism

• I/O time is not negligible anymore but no

bottlenecks

• Two EOS instances tested

• EOSCMS by default, but CERNBOX produces

similar (slightly worse) results

Direct access to EOS

8

• Compared performance of direct access to
Nebraska and CERN, cold cache and warm
cache

• Performance results

• A cold cache is slower than direct access!

• Due to sparse file access and network latency

• Multiprocess scales very well

• HDD XCache almost as good as SSD XCache

• RDF multithreaded scales very poorly “out of the box”

• All connections multiplexed into one ⇒ bottleneck!

• SDD XCache helps a lot, but scalability is still broken

HDD/SDD-based XCache

Coffea + HDD XCache: wallclock time (s)

Site Direct Cold Warm

Nebraska 442 ± 16 608 133 ± 6

EOSCMS 139 ± 8 325 137 ± 3

RDF MT + HDD XCache: wallclock time (s)

Site Direct Cold Warm

Nebraska 5470 ± 910 18841 1531 ± 78

EOSCMS 323 ± 95 8149 1558 ± 400

9

• Scalability with ROOT multithreading and
XCache can be improved

• XRD_PARALLELEVTLOOP=10 on the client
largely improves Xrootd performance

• Prevent the connection multiplexing by adding
different client names to the file names
root://client1@eoscms.cern.ch//eos/myfile.root

• Enormous impact when reading from
XCache

• Obvious as it is a single server and multiplexing a
big bottleneck

• Effect negligible when reading from EOS

• Files already spread over hundreds of disk
servers, multiplexing irrelevant

RDF + Xrootd performance optimization

10

http://eoscms.cern.ch/eos/myfile.root

• rootreadspeed CLI tool

• Created exactly to identify I/O bottlenecks when

reading ROOT files locally or via Xrootd

• Reading only the branches used by the AGC RDF

workload for comparison purposes

• Excellent performance with XCache

• To be better understood

• EOS performance and scalability similar
to EOS RDF

• About 1.5 faster as it does only the I/O

Synthetic ROOT I/O performance

11

• Real world Higgs analysis from A. Novak

• First observation of ggH → cc

• Running on NanoAOD

• Tests using 2017 data, 6 TB, average file size 160
MB

• Performance comparison in different
scenarios

• Local access

• Direct EOS access

• XCache

CMS NanoAOD analysis using Coffea

Wallclock time (h) CPU efficiency (%) Read rate (MiB/s)

Local access 4.1 103 270

Direct EOS access 4.7 87 34.5

Cold XCache 4.6 89 34.7

Warm XCache 4.8 82 34.1

• Results for 64 workers

• CPU limited

• Caching layer irrelevant

• I/O is modest

12

Local access EOS access

• Several sample analyses using direct access with TTree and RNTuple

• Also support for RDataFrame and implicit multi-threading (prmon readings not conclusive)

• ATLAS: H --> gg 2020 open data (cf. tutorial df104). Medium dense reading (~25%, 12/81 features)

• TTree: 9.9GB, RNTuple: 4.4 GB

• CMS: 2019 ttjet nanoAOD (cf. tutorial df102). Sparse reading (<1%, 6/1479 features)

• TTree: 20GB , RNTuple: 13.5GB

• Lhcb: LHCb run 1 open data (B mass spectrum). Dense reading (>75%, 18/26 features)

• TTree: 5.3 GB , RNTuple: 5.3 GB

• H1: ROOT's H1 standard analysis (cf. df101 tutorial).

• TTree: 13.3 GB , RNTuple: 10 GB Medium dense reading (~10%, 16/152 features)

• Measurements with different storage setups (PrMon and internal metrics (too many to show..))

Tests with J. Blomer’s Virtual Probe Station :

13

https://github.com/jblomer/iotools

• Cold HDD cache and direct EOS are close

• Warm SSD cache is on par with local SSDs

• Data formats matter, little gain from
concurrency

• TTree is sensitive to external activities

• RDataFrame shows similar patterns, profits
from using multiple cores up to 50

• For RNTuples on SSDs, RDataFrame is,
using 40 cores, more than twice as fast as
“classic” processing

14

Direct access TTree and RNTuple RDataFrame-style processing

• More workloads in the pipeline

• T. Tedeschi’s CMS analysis using RDataFrame

• New version of the AGC workload using NanoAOD

• Obtain workloads from other LHC experiments

• Scale out tests to batch using Dask

• Simulate multiuser environment

• Provide documentation to allow others to run the same tests

• With some limitations, e.g. only Open Data datasets

Future plans

15

• Designing an analysis facility requires to test several workloads in several hardware, client and
server configurations

• Compared performance and scalability under different (favorable) scenarios

• A high-performance node with no other users offers the maximum obtainable throughput per core

• Direct access to EOS comparably performant, no server-side bottlenecks observed

• It is a shared facility, busy with other workloads, but performance is rather consistent

• A caching layer (XCache) does not provide additional benefits to direct access to EOS

• SSDs are better but not necessarily much better

• It will be shared in production

• Quasi-real workloads like the AGC ones are a very valuable tool, but real workloads are also essential for testing

• Plans to extend the testing and analysis activity

• New workloads

• New ideas

• Will work on making RDF/XrdCl multithreading more scalable without the need for additional tuning

Conclusions

16

• The authors would like to thank

• B. Bockelman, S. Campana, X. Espinal, A. Held, O. Shadura, C. Lange, P. Lenzi, L. Mascetti, A. Novak, E.

Sindrilaru, J. Pivarski, T. Tedeschi and others for many useful discussions and suggestions

Acknowledgements

17

• Analysis for LHC experiments at CERN: https://zenodo.org/record/6337728

• PrMon: https://github.com/HSF/prmon

• Analysis Grand Challenge: https://github.com/iris-hep/analysis-grand-challenge

• Coffea: https://coffeateam.github.io/coffea/

• AGC RDF implementation: https://github.com/andriiknu/RDF/

References

18

https://zenodo.org/record/6337728
https://github.com/HSF/prmon
https://github.com/iris-hep/analysis-grand-challenge
https://coffeateam.github.io/coffea/
https://github.com/andriiknu/RDF/

Backup slides

19

Coffea: all configurations

20

RDF: all non-Xcache configurations

21

RDF: all XCache configurations

22

	Slide 1: I/O performance studies of analysis workloads on production and dedicated resources at CERN
	Slide 2: Introduction
	Slide 3: Excerpts from the 2022 studies
	Slide 4: Current work
	Slide 5: Testbed setup and metric measurement
	Slide 6: Analysis Grand Challenge ttbar analysis
	Slide 7: Local access
	Slide 8: Direct access to EOS
	Slide 9: HDD/SDD-based XCache
	Slide 10: RDF + Xrootd performance optimization
	Slide 11: Synthetic ROOT I/O performance
	Slide 12: CMS NanoAOD analysis using Coffea
	Slide 13: Tests with J. Blomer’s Virtual Probe Station :
	Slide 14
	Slide 15: Future plans
	Slide 16: Conclusions
	Slide 17: Acknowledgements
	Slide 18: References
	Slide 19: Backup slides
	Slide 20: Coffea: all configurations
	Slide 21: RDF: all non-Xcache configurations
	Slide 22: RDF: all XCache configurations

