
Toward Ten-Minute
Turnaround in
CMS Data Analysis:
The View from Notre Dame

John Lawrence
On Behalf of CMS Collaboration and
Notre Dame Cooperative Computing Lab
May 8th, 2023

1

https://ccl.cse.nd.edu/

Analysis Grand Challenge for HL-LHC

• The HL-LHC data volumes pose a serious
challenge to current analysis approaches

• IRIS-HEP has initiated Analysis Grand
Challenge (AGC) to develop analysis
framework that provides necessary:
– Throughput
– Flexibility
– Ease of use
– Low latency

2

https://iris-hep.org/
https://iris-hep.org/projects/agc.html
https://iris-hep.org/projects/agc.html

Analysis: TopEFT Framework

• Use TopEFT analysis to test current
framework
– Full Run 2 analysis (~150/fb, HL-LHC~3000/fb)

• Designed to analyze CMS data in order to
search for new physics using the framework
of Effective Field Theory (EFT)
CMS-PAS-22-006

• Built on Coffea framework with columnar
approach relying on scientific python
ecosystem

3

https://github.com/TopEFT/topcoffea
https://cds.cern.ch/record/2851651?ln=en
https://coffeateam.github.io/coffea/

TopEFT overview
• The TopEFT workflow:

– Inputs are flat n-tuple (CMS NanoAOD) formatted proton-proton collision data from CMS

(~2TB)

– Processing step consists of calculating relevant properties of the events and filling

histograms

– Accumulation function merges together the histograms to produce the final output

• Memory considerations of the histograms produced and accumulated

with TopEFT:
– TopEFT histograms are heavier than conventional histograms

– Each bin carries an array of 378 numbers for its EFT framework

– The accumulation step can cause large memory requirements

4

Scaling out TopEFT with Work Queue

● Work Queue is a system for creating and managing scalable manager-worker style programs
developed by ND CCL team

● To efficiently utilize distributed resources, TopEFT employs the Work Queue executor
● The Work Queue manager accepts task definitions from Coffea (for processing and accumulation

tasks)
● Schedules the tasks to remote workers
● Sends along the relevant python environment with the task

XRootD
local storage

WAN XRootD
Data Federation

storage units

5

XRootD

http://ccl.cse.nd.edu/software/workqueue/

Accumulation

The final step of merging all the histograms can
require large amounts of memory

6

Data ~2TB Manager
distributes data
to workers

Chunk Worker

Data is divided
into chunks for
each worker

Chunk Worker

Chunk Worker

Chunk Worker

Partial results
are returned to
manager for
accumulation

Result Worker

Workers
combine
results for
final
results

Result

Result Worker

Result

Results

Workers do
the
accumulation
with results

ND Tier-3

7

TopEFT performance today at ND Tier-3

total:
avg time:
slowest:

largest mem:
largest disk:

1.2K
6s
141s
12 GB
20 GB

8

runtime:
cores:

mem total:
disk total:

100min
up to 1000
18.5 TB
7.2 TB

total root data:
data actually used:

IO temp files:
origin:

1.7 TB
0.75 TB
0.25 TB
xrootd local

total:
avg time:
slowest:

largest mem
largest disk

23K
110s
318s
4 GB
0.5 GB

processing tasks accumulation tasks

cpu needs IO needs

Current Bottlenecks Visualized

Long worker down time
Long accumulation tail

Accumulation
Data Returned

TopEFT
+ Work Queue

Whole Analysis: 101 minutes
Run over all Run 2 data and Monte Carlo
~1 billion events

9

Current Bottlenecks Visualized

Accumulation
Data Returned

TopEFT
+ Work Queue

10

Preprocessing (~2 minutes)
XRootD requests and asset management

0

Current Performance Bottlenecks

1. All partial results are returned to the manager, and sent back to
workers for accumulation

2. XRootD servers on top of spinning disk, which greatly limits bandwidth

3. Extra data read by the XRootD protocol that is not part of the read
requests

4. Accumulation tasks may need tens of GB of memory, which reduces
parallelism

5. Manager does not efficiently had out tasks to workers or obtain workers

In order of impact:

11

Changes Needed to Get There
• Data Storage System: Every task in the system reads out a different

selection of data. Need a data storage system that provides low
latency (from open to first read) and high throughput (many clients
reading separate data at once.)

– New Approach: Migrating away from HDFS on spinning disk
cluster to Ceph on experimental NVMe cluster.

• Managing Assets for Startup: A significant amount of turnaround
time is lost to startup: allocating nodes, transferring software
environments, establishing connections.

– New Approach: Retain as much as possible on each cluster
node, and design systems to exploit assets already present.

• Managing Data Reduction: TopEFT in particular produces large
quantities of intermediate data: transferring it back to a central point
results in exponential growth of network traffic:

– New Approach: Leave data where it is created in the cluster,
and dispatch accumulation tasks to consume it in place.
(Requires closer attention to failure and recovery.)

12

Next: TaskVine Workflow Scheduler

TopEFT
Application

Coffea
Framework

TaskVine
Scheduler

Proc.

Proc.

Manager
Node

TaskVine Workers
XRootD

local storage

WAN XRootD
Data Federation

access units

Accum

tmp

storage units

final

tmp

Local
Storage

data

data

TaskVine is our next generation of workflow scheduler that improves upon
Work Queue. Key idea: data stays in the cluster where it is accessed or
created, so that tasks can simply use data in place, rather than moving it
around. Our prototype of TopEFT running on TaskVine eliminates the "long
tail" of accumulation tasks by keeping the intermediate data in place.

http://ccl.cse.nd.edu/software/taskvine

13

XRootD

http://ccl.cse.nd.edu/software/taskvine

New:
In-Cluster

Accumulation
TopEFT

+ TaskVine

Old:
Accumulation
Data Returned

TopEFT
+ Work Queue

Stuck on
Long Tail!

Tail
Eliminated!

14

Conclusion

• TopEFT analysis using the Work Queue
system as an example for analyses
highlighting problems and potential
solutions

• Implementing TaskVine to improve
throughput by keeping partially finished
results at worker nodes

• Improved a major bottleneck and cut
runtime down by 20%

15

Thank You!

Notre Dame CMS group and CCL team
TaskVine

16

https://ccl.cse.nd.edu/
http://ccl.cse.nd.edu/software/taskvine

