GENERAL PARTIAL WAVE ANALYSIS TOOL TF－PWA AND ITS APPLICATIONS

Yi Jiang（蒋艺）

University of Chinese Academy of Sciences
Abstract：Using simple configuration file，partial wave analysis（PWA）can be processed automatically and customable．Benefit from the powerful GPU calcu－ lation and Automatic Differentiation（AD）in TesorFlow2，the procedure is also fast and efficient．TF－PWA is our approach for general partial wave analysis tools．It have already used in real analysis．

Homepage：
https：／／github．com／ jiangyi15／tf－pwa Or scan the QR

1．Configuration：YAML format，easy to understand and to modify．

Particle：Basic physic objects，with spin，parity， mass，width，and so on．Custom model is also allowed．

Decay Chain：A list of decay from initial parti－ cle to final particles．

Decay Group：A list of all possible Decay Chains

Decay：Connections in particles．Simple templates are provided．Also support custom model．Provide simplify replacement rules for complex decays．

2．Rule based Amplitude Formula．
probability：$|\mathcal{A}|^{\wedge} 2$
Decay Group： $\mathcal{A}=\tilde{A}_{1}+\tilde{A}_{2}+\cdots$
Decay Chain：$\tilde{A}=A_{1} R A_{2} \cdots$
Decay：Wigner D－matrix，$A=H D^{* J}(\phi, \theta, 0)$ Particle：Breit－Wigner：$R(m)$ ，user defined
$\mathcal{A}_{\lambda_{A}, \lambda_{B}^{\prime}, \lambda_{C}^{\prime}, \lambda_{D}^{\prime}}^{R}$
$=\sum_{\lambda} H_{\lambda_{R} \lambda_{B}}$ ${ }_{D_{\lambda_{B}, \lambda_{B}^{\prime}}^{j^{\prime}}}^{j_{B^{\star}}}\left(\alpha_{B}, \beta_{B}, \gamma_{B}\right) D_{\lambda_{C}, \lambda_{C^{\prime}}}^{j_{c^{\star}}}\left(\alpha_{C}, \beta_{C}, \gamma_{C}\right) D_{\lambda_{D}, \lambda_{D^{\prime}}}^{j_{D^{\star}}}\left(\alpha_{D}, \beta_{D}, \gamma_{D}\right)$

$$
\frac{d \sigma}{d \Phi} \propto \sum_{\lambda_{A}} \sum_{\lambda_{B}, \lambda_{C}, \lambda_{D}}\left|\sum_{R} \mathcal{A}_{\lambda_{A}, \lambda_{B}, \lambda_{C}, \lambda_{D}}^{R}\right|^{2}
$$

4．Likelihood fit：（cFit as an example）

$$
\begin{gathered}
-\ln L=-\sum \ln \left[\frac{|\mathcal{A}|^{2}}{\mathcal{N}}+f_{b g}\right], \quad \mathcal{N}=\frac{1}{N} \sum|\mathcal{A}|^{2} \\
\frac{\partial \ln L}{\partial \vartheta}=\frac{\partial}{\partial \vartheta} \sum \ln \left[\frac{|\mathcal{A}|^{2}}{N}+f_{b g}\right]+\frac{\partial}{\partial N} \sum \ln \left[\frac{|\mathcal{A}|^{2}}{\mathcal{N}}+f_{b g}\right] \frac{\partial \mathcal{N}}{\partial \vartheta}, \\
\frac{\partial \mathcal{N}}{\partial \vartheta}=\frac{1}{N} \frac{\partial}{\partial \vartheta} \sum|\mathcal{A}|^{2}
\end{gathered}
$$

Data and MC：direct 4－momenta input．more information can be added such as weights and charge．

$$
\begin{array}{|l}
\text { data: } \\
\text { dat_order: [p, pim, pip, pi0] } \\
\text { data: [data.dat] } \\
\text { bg: [sideband.dat] } \\
\text { bg_weight: [0.13858078] } \\
\text { phsp: [pshp.dat] }
\end{array}
$$

3．Automatic calculation

7．Other functions：

（1）Constrains on parameters．
（2）Toy generation，with additional importance sampling．
（3）Bidirected transform between angle and momenta．
（4）Partial waves factorized extraction．
（5）Numerical method for lineshape calculation．（3）＋（4）
And more．

