
May 9th, CHEP 2023 Track 6

Laurelin: A ROOT I/O 
Implementation for Apache 
Spark
Andrew Melo 
Vanderbilt University

1



Introduction

• Why Apache Spark


• Spark DataSources and ROOT File Format


• Laurelin


• Performance Comparisons

2



Why Apache Spark

• Apache Spark is a widely-used "multi-language engine for executing data engineering, 
data science, and machine learning on single-node machines or clusters"


• Spark lazily evaluates queries by making a query plan, optimizing the plan, then finally 
compiling it down to JVM bytecode.


• Externally-developed extensions enable compiling the query to vectorized x861,2 or 
CUDA3 code


• To enable better interoperability between the burgeoning Python-based ML 
ecosystem, Spark supports transferring data to/from Python as Arrow-buffers, 


• Recently-released Spark3.4 added a client-server Python client, meaning a single large 
Spark cluster can be instantiated and shared between multiple users

3

1https://github.com/oap-project/gazelle_plugin

2https://github.com/oap-project/gluten

3https://nvidia.github.io/spark-rapids/

http://github.com/oap-project/gazelle_plugin
http://github.com/oap-project/gluten


Spark DataSources

• Spark has native support for many popular data sources, both file-based (e.g. 
Parquet) and databases (e.g. Hive, JDBC, Kafka)


• There is additionally a DataSource API which provides a (somewhat) stable 
interface for others to provide support for other data source/sinks


• Support the sort of data setters/getters you expect, as well as some 
optional interface mixins to support various optimized "shortcuts" -- i.e. 
Spark can inform a DataSource that it only wants columns X and Y


• Importantly, Spark can consume and produce Arrow buffers directly

4



TTree to Arrow Buffers

• Data in TTrees are stored within 
TBranches, which eventually leads to 
TBaskets with the actual payload 
data itself


• These TBaskets consist of an array of 
data as well as optional array of 
counts (for jagged/ragged arrays)


• Conveniently, this is very close to the 
Arrow format (mod. endianness, etc)

5

TKey (Compressed) Data

TBasket

Describes

float[] data int[] counts



Laurelin

• Laurelin is a Java-based ROOT I/O 
implementation to read/write TTrees 
to/from ROOT files


• Since TBaskets are roughly in Arrow 
format, and Spark has native internal 
support for Arrow-based columnar 
accesses, Laurelin "just" has to 
understand (de)serializing TTree and 
other objects to locate the Baskets


• Laurelin splits the ser/der code from 
the Spark code, allowing the library to 
be used in non-Spark JVM 
applications

6

Laurelin, one of the Two Trees of Valinor 
in Lord of the Rings

Image Credit

https://www.ardapedia.org/wiki/Datei:Laurelin.jpg


Read Path

• Reading ROOT files involves writing manual read code for enough objects 
(TFile, TKey, etc..) to bootstrap interpreting the Streamers, which can then be 
used to dynamically interpret all other classes (TTree, TBranch, TBasket..)


• Much of Laurelin is responsible for the nuances of this deserialization


• With the Streamers loaded, we simply


• Decompress the TBaskets into off-heap buffers


• Perform an endianness swap


• Construct a Spark ArrowColumnVector to wrap the data/count buffers

7



Write Path
Much more difficult

• Even if you know up front all of the data you want to write, you cannot write a 
ROOT file in one pass


• One side effect is it's not (easily) possible to have multiple threads writing to 
the same ROOT file


• While reading, we can simply skip over and ignore data we're not interested 
in, not the case for writing


• E.G. TBranch inherits from TAttFill, which we have to faithfully output, 
otherwise other implementations cannot parse the resulting file

8



Results

• Moving to Arrow-based off-heap buffers instead of hand-rolled on-heap 
buffers led to a 40% improvement in speed in some cases


• Reduced GC pressure as well as not needing to memcopy buffers at the 
syscall boundary


• Currently using a java-based LZMA decompression library, moving to that 
buffer would allow a true off-heap only data path


• Read performance is within 10% of Spark's Parquet implementation


• Files written by Laurelin can not currently be read using ROOT/uproot, work is 
continuing to fix remaining issues

9



Future Work

• There is a lot of work to be done on the metadata ser/der paths to speed 
them up


• Using BCEL to dynamically generate Java class implementations based on 
streamer definitions


• RNTuple support


• Requesting/upstreaming parity between DataSource API and functionality 
that builtin file support has


• e.g. when writing a file, being provided the # of rows upfront

10


