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Simulation of a proton-proton collision

● Hard process
○ Parton interactions, described by 

Perturbative QCD
● Parton Showering → 

○ Partons splitting to many partons
● Multiple Parton Interactions
● Hadronization → 

○ Partons to hadrons
○ Simulated by the “string model” (Pythia8 or 

Sherpa) or the “cluster model” (Herwig)
○ Both models contain free parameters that 

need to be tuned so that the model 
matches data
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Motivation
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Generator tuning is important for precision measurements

● Generator tuning will play an important role 
in precision measurement, such as Top 
mass measurement

● In Top mass from ATLAS combined 
measurement [TOPQ-2017-03], its 
precision is entering “uncharted territory”, 
where hadronization and color 
reconnection effects become important. 

● Strong interactions below ~500 MeV is 
every difficult, described by empirical 
models with many parameters that can be 
tuned to experimental observable

arXiv:1205.6497

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/TOPQ-2017-03/
https://arxiv.org/abs/1205.6497
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Professor: automated MC tuning

Key component is to train a 
“surrogate function” that models the 
dependence of the observable 
values on the generator parameters

Then use the surrogate function to 
find the optimal generator 
parameters by minimizing the χ2 
function
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https://professor.hepforge.org/
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Apprentice: Python-based automated MC Tuning

● Rewrite the tools with Python. 
○ Data is based on numpy, minimizer from scipy, parallelism by Message Passing 

Interface
● Reformulate the tuning procedure as bi-level optimization

○ Inner loop optimization and Outer loop optimization
● Add HDF5 representation for Histograms

○ Serialize the results in Json files
● Add additional surrogate function → Rational approximation
● Add robust optimization method
● See our paper here, https://arxiv.org/abs/2103.05748
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https://github.com/HEPonHPC/apprentice

https://arxiv.org/abs/2103.05748
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Why yet another tool?

● Minimization of the objective function often require the calculation of gradients of the 
function w.r.t the parameters to be tuned
○ The gradients are calculated manually

● Current objective function does not include MC uncertainties
○ Extending to new objective function requires the calculation of the gradients

● jax has features attractive to us
○ supports both GPUs and CPUs
○ automatic differentiation → gradients and Hessian matrix
○ support of machine learning models (stochastic gradient descent)

Jax MC Tuner is based on Jax with a python interface for MC Tuning
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A dummy data scenario

Two observables (Exponential function), each 
with 20 bins, x in [0, 3]
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Two “generator” parameters:

● a ∈ [1, 2] and b ∈ [-1.2, -0.8]

MC Runs

● Sample 30 independent pairs of (a, b) 
● Generate 100 k events for each pair
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Inner loop optimization

We use the monomial function of order = 3 as the surrogate function
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y are the observable values in the bin
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Inner loop optimization with MC uncertainties

We use the monomial function of order = 3 as the surrogate function
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y are the observable values in the bin
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Outer loop optimization

● By default, no MC uncertainties are added 
to the objective function (namely, no_error)

● The Monash tune, 
https://arxiv.org/abs/1404.5630, manually 
add 5% to the objective function

● Optionally, add MC uncertainties as 
additional term (namely, with_error)
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Objective Function:

● d: experimental data
● P: generator parameters to be tuned
● W: optimal surrogate function weights

https://arxiv.org/abs/1404.5630
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Outer loop optimization with MC uncertainties

Instead of directly using the MC uncertainty ε in 
the outer loop optimization, we propagate the 
error from the inner optimization to the outer 
optimization (namely with_cov)

With covariance, the objective function 
becomes difficult to optimize
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Objective Function:

● d: experimental data
● P: generator parameters to be tuned
● W: optimal surrogate function weights
● V: covariance matrix of W
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Dummy data result

All three methods yield a similar performance

● Similar optimized generator parameters
● Similar agreement between tuned distributions and the true distribution
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Generate dummy 
experiment data by 
setting a = 1.5, b = 
-1.0 (i.e. target 
params)
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Dummy data result

Generate dummy experiment data by setting a 
= 1.5, b = -1.0 (i.e. target params)
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● no_errs yields a very aggressive error 
estimation (underestimated)
○ In practice, we manually increase the 

error to an extent that uncertainty band 
could cover the data

● with_err, however, yields a very 
conservative error estimation 
(overestimated)

● with_cov yields a most reasonable error 
estimation

The contour shows the space where the objective 
function is increase by the number of degree freedom
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Dummy data result

Running the outer optimization 1000 times, and 
plot the histogram with successful optimization

Again, with_cov yields the most reasonable χ2 
/ nDoF

However, many runs end up to the boundary of 
the generator parameter space in with_cov, 
partially due to the complication of the 
objective function
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Conclusion

● We examined the impact of adding the MC uncertainties into the Generator tuning
● Propagating the MC uncertainties through the inner loop optimization to the outer loop 

optimization provides the most sensible generator parameter uncertainty estimation
○ No need of ad-hoc manipulation of the tuning parameters

● Several issues with the integration of the covariance matrix into the outer loop objective 
function 
○ Much more computation, making the tuning hard to scale
○ Harder to find the optimal generator parameters

■ Need multiple starting points, 
■ Need better minimization algorithms; stochastic gradient descent?
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