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Simulation of a proton-proton collision
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Hard process

o Parton interactions, described by
Perturbative QCD

Parton Showering —

o Partons splitting to many partons

Multiple Parton Interactions

Hadronization —

o Partons to hadrons

o Simulated by the “string model” (Pythia8 or
Sherpa) or the “cluster model” (Herwig)

o Both models contain free parameters that
need to be tuned so that the model
matches data



Motivation

Generator tuning is important for precision measurements
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/TOPQ-2017-03/
https://arxiv.org/abs/1205.6497

Professor: automated MC tuning

https://professor.hepforge.org/
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Apprentice: Python-based automated MC Tuning

https://github.com/HEPonHPC/apprentice

e Rewrite the tools with Python.
o Data is based on numpy, minimizer from scipy, parallelism by Message Passing

Interface
e Reformulate the tuning procedure as bi-level optimization

o Inner loop optimization and Outer loop optimization
e Add HDF5 representation for Histograms
o Serialize the results in Json files
Add additional surrogate function — Rational approximation
Add robust optimization method
See our paper here, https://arxiv.org/abs/2103.05748
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https://arxiv.org/abs/2103.05748

Why yet another tool?

e Minimization of the objective function often require the calculation of gradients of the
function w.r.t the parameters to be tuned
o The gradients are calculated manually

e Current objective function does not include MC uncertainties
o Extending to new objective function requires the calculation of the gradients

e jax has features attractive to us
o supports both GPUs and CPUs
o automatic differentiation — gradients and Hessian matrix
o support of machine learning models (stochastic gradient descent)

Jax MC Tuner is based on Jax with a python interface for MC Tuning
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A dummy data scenario

Two observables (Exponential function), each
with 20 bins, x in [0, 3]

Yo = eaazo—l—bazg
Yy = eaazl—l—ba:‘;’

Two “generator” parameters:
e a€[1,2]landb € [-1.2, -0.8]
MC Runs

e Sample 30 independent pairs of (a, b)
e Generate 100 k events for each pair
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Inner loop optimization

We use the monomial function of order = 3 as the surrogate function
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Inner loop optimization with MC uncertainties

We use the monomial function of order = 3 as the surrogate function

ﬁ
y — P >< M/ y are the observable values in the bin
solve: min||y — P x W||* /4?2 (w0 )
) error w1
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Outer loop optimization

Objective Function:

e d: experimental data
e P: generator parameters to be tuned
e W: optimal surrogate function weights
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By default, no MC uncertainties are added
to the objective function (namely, )
The Monash tune,
https://arxiv.org/abs/1404.5630, manually
add 5% to the objective function
Optionally, add MC uncertainties as
additional term (namely, )
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https://arxiv.org/abs/1404.5630

Outer loop optimization with MC uncertainties

Objective Function: Instead of directly using the MC uncertainty € in
the outer loop optimization, we propagate the
error from the inner optimization to the outer
optimization (namely )

e d: experimental data
e P: generator parameters to be tuned
e W: optimal surrogate function weights

e V. covariance matrix of W _ _ o _
With covariance, the objective function

becomes difficult to optimize
d—PxW
2 — —»T
Ad“+PVP

min Zbin
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Dummy data result

2_exp: observable 1 2_exp: observable 2
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All three methods yield a similar performance

e Similar optimized generator parameters
e Similar agreement between tuned distributions and the true distribution
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Dummy data result

Generate dummy experiment data by setting a

=1.5,b =-1.0 (i.e. target params)

chi2 boundary region from eigenvectors (ellipse) for 2_exp
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The contour shows the space where the objective
function is increase by the number of degree freedom
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2.0

no_errs yields a very aggressive error
estimation (underestimated)

o In practice, we manually increase the
error to an extent that uncertainty band
could cover the data

with _err, however, yields a very
conservative error estimation
(overestimated)

with _cov yields a most reasonable error
estimation
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Density

Dummy data result

2_exp_ chi2/ndf

tune_w_cov
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0.00
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chi2/ndf

102

Running the outer optimization 1000 times, and
plot the histogram with successful optimization

Again, with _cov yields the most reasonable x2
/ nDoF

However, many runs end up to the boundary of
the generator parameter space in with_cov,
partially due to the complication of the
objective function
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Conclusion

We examined the impact of adding the MC uncertainties into the Generator tuning
Propagating the MC uncertainties through the inner loop optimization to the outer loop
optimization provides the most sensible generator parameter uncertainty estimation

o No need of ad-hoc manipulation of the tuning parameters

e Several issues with the integration of the covariance matrix into the outer loop objective

function

o Much more computation, making the tuning hard to scale

o Harder to find the optimal generator parameters

= Need multiple starting points,
= Need better minimization algorithms; stochastic gradient descent?
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