L
Y2APUPWHA

PyPWA: ATOOLKIT FOR PARAMETER
OPTIMIZATION AND AMPLITUDE ANALYSIS

Mark Jones

Carlos Salgado (NSU/Jlab), Mark Jones (NSU/Jlab), William Phelps (CNUY/Jlab), Peter Hurck (University of Glasgow)

E NORFOLK STATE
r-‘: UNIVERSITY
[

Unlver51ty //‘CHRISTOPHERNEWPORT ?on Lab

o / O G asgow UNIVERSITY omasJeffe rson National Accelerator Facility

Tuesday, May 9th, 2023 CHEP 2023 - PyPWA 2

Qutline

« Amplitude Analysis

- Software and Parallel Design
- Optimization

+ Scaling on CPUs and GPUs

- PWA Examples

* Installing PyPWA

+ Summary and Ongoing Work

Tuesday, May 9th, 2023 CHEP 2023 - PyPWA 3

Amplitude Analysis

* In order to identify hadrons we need to determine (|ntensity)
their quantum numbers: using

Amplitude Analysis / Partial Wave Analysis (PWA)

+ In PWA, the intensity is expanded in partial waves
defined by the angular components (angular quantum
numbers)

« PyPWA software is a flexible and modular toolkit used
to define any type of amplitude and represent data by
any set of variables

* PyPWA performs parameter optimization Dimuon mass (GeV/c)
and generation of modeled or simulated data.

Amplitude

For example: A

IQ=)3" > ™0™ @ Vi [Vil %)

(Intensity) ko €r Limll,|m!

Fitted

Tuesday, May 9th, 2023 CHEP 2023 - PyPWA 4

Software Design

- PyPWA: flexible set of tools for

fitting multi-dimensional models
and generating simulations Binning
- Object-oriented design for data

structures and components with
runtime state or data plugins

- Functional design for th ini
p:cnlgalgoena esign for the remaining e

+ Two main components: data
processing and data analysis

- Data processing: libraries for parsing, Parallelized
masking, binning and operating on data Process Module

+ Data analysis: tools for developing
likelihoods, amplitudes, fitting, and
visualization Analyze

AE

Initialize and Load Data

User
Defined

Tuesday, May 9th, 2023 CHEP 2023 - PyPWA 5

s arameters

Parallel Design

Amplitude

- Bypasses Global Interpreter Lock
(GIL) limitation using multiprocessing —_
module

+ Implements multiprocessing by inheriting

from Process class from the
Multipr ing modul
ultiprocessing module Core 2

« Scales kernel and dataset across available
hardware threads

Data
Subset

- Communication object enables exchange Parallelized
of information between parent and child Process Module Core 3
processes i

+ Multi-GPU support through
multithreading for compatibility with
CUDA

- High scalability across hardware
resources, built directly into PyPWA's md Core N
Likelihoods

Tuesday, May 9th, 2023 CHEP 2023 - PyPWA 6

Optimization

 Minimize loss functions for model parameters
+ Built-in support for optimizers:
+ iMinuit:
* Python implementation of MINUIT2

* MIGRAD, HESSE, and MINOS
algorithms

- emcee (MCMCQ):
* Parameter estimation via MCMC
* Ensemble sampling with multiple chains

i.1.1.0

r1.1.1

+ Likelihood objects can be called as if they
were a standard function, allowing for
support for most Python optimizers.

+ Analyze results for correlations and best
parameters

i.1.1.1

Tuesday, May 9th, 2023 CHEP 2023 - PyPWA 7

Execution Time

—— NumPy
—}— NumExpr (Numexpr MP + PyPWA)

1 | —— Torch (PyTorch MP)
—— Torch (PyPWA)
—}— NumExpr (Numexpr MP Off + PyPWA)

104 4

- PyPWA demonstrates excellent
scalability on multi-core CPUs

Seconds

103 4

« NumExpr library locked to a single
thread with PyPWA processing

module provides the best S R T T T R
performance S Speedup
 Numexpr with default threading still 20 E i
outperforms pure Numpy and PyToch - Trencru
amplitudes. .
- PyPWA processing module g v
outperforms PyTorch OpenMP p

implementation. //
)

0 10 20 30 40 50 60 70 80
Processes

Tuesday, May 9th, 2023 CHEP 2023 - PyPWA 8

Scaling on GPUs

* Near perfect scaling on GPUs

- Utilizes PyTorch's Tensors for math » 2007
operations g 150
+ Amplitudes remain in Python, no C or C++
required. 100
- Leverages multithreading to remain
compatible with CUDA 307 po.9s61
2.5
s
§ 2.0
&

[
N A
w

V100s

Tuesday, May 9th, 2023

PWA Example

- Eta pi photoproduction

1.0

0.5

(6)

Generated ..

-1.0

cos|

0.8

CHEP 2023 - PyPWA

o B N w

Polarization Angle

1.0 12 14 16 18 2.0
mass (GeV/c?)

9

+ Extract resonances and associated quantum numbers 1500 .
with Mass-independent partial wave analysis, using 5 2000 ks
iMinuit for extended log-likelihood fit 2 0 . i
- Results: - . =
- Good agreement between fitted values and simulated 5°° g e 1
data 06 08 10 12 14 16 18 2.0
mass (GeV/c?)
+ Successfully extracted input resonances and waves
* Figures: ki ELM
o T 500001 ? ~$- 100
- Generated mass distribution and angular distributions I -#- 110
. . . . [—¥- 111
- Fitted intensities vs mass (total and for different 40000 i ’ —4- 120
—_ 1
waves) & P ' ". ::: 2
0 " 2)) ; 30000 - ," I} I)("x
16,9, 2,®) = 10, ¢) — PIV(0,) cos 20 —P[9(0, $) sin 2D 5 - 4 b VY
zZ s T H i \
- £ 20000 1 o Py { \
. f -,— Dat: g ,Il |Il ”’ “‘ ;,X x‘k
n % A S \
g 40000 ',‘ v 10000 A : Il “ »)‘X
. g | o 5 oy
Flt %soooo ’- -‘ ,- .“ .,ﬁ‘- ".‘Iﬁl{ﬁﬁ\ &‘Xxxx.xx‘x‘:m. l'.
AR b Wit , : : : : .
o Ao -b.g'- ¥ 0.8 1.0 12 14 16 18 2.0
o * Mix of Waves mess (e

Installing PyPWA

Available on MacOS (x86/Armé4) and Linux (x86)
PIP:

> pip install git+https://github.com/]effersonLab/PyPWA git

Anaconda:

> conda install -c markjonestx pypwa

Tuesday, May 9th, 2023 CHEP 2023 - PyPWA | |

Summary and Ongoing VWork

- PyPWA offers a flexible toolkit for amplitude analysis in multi-particle final
states within the Python ecosystem

+ Users can utilize various independent components to solve a range of optimization
problems

+ Supports parallel processing and GPU acceleration with PyTorch for improved performance

+ User-friendly installation on Linux and MacOS with Anaconda, and extensive support from
the Python community

+ Future developments can focus on further optimization, expanding
capabilities, and we are incorporating new Al technologies to enhance
performance and user experience

Tuesday, May 9th, 2023 CHEP 2023 - PyPWA 12

PyPWA Links

» Github: https://github.com/JeffersonLab/PyPVVA
- ReadTheDocs: https://pypwa.readthedocs.io/en/main/

- Web page: https://pypwa.jlab.org

https://github.com/JeffersonLab/PyPWA
https://pypwa.readthedocs.io/en/main/
https://pypwa.jlab.org

