

New Developments in Minuit2

L. Moneta, O. Zapata, H. Dembinsky

Introduction

► Minuit

- Popular minimisation program developed in the 1970s by F. James.
- It is a variable-metric method (quasi-Newton method) based on the DFP / BFGS update of the inverse Hessian matrix.
- Works extremely well for fitting (e.g. parameter estimation) and it is has been used extensively in HEP.
- Available in ROOT since the beginning in the TMinuit class.

Minuit2

- Improved version re-written in C++ classes of same algorithm (MIGRAD)
- Available both in ROOT and as a standalone version
- Being used in the statistical analysis of LHC experiments
- **iMinuit**: python package built on top of Minuit2
 - used in large astroparticle physics experiments

Characteristics of Minuit

- ► Works very well, superior to gradient descent methods
 - Much less number of iterations to converge
 - No need to perform matrix inversion at each iteration
 - Approximate Hessian converges to true Hessian at the minimum
 - Regularisation when Hessian is not positive defined
 - add offset to the diagonal of H to make it positively defined
 - Self-correcting if the Hessian approximation is not good enough
- Disadvantages:
 - Sensitive to initial parameters, it is a local minimiser and can get stuck in local minima
 - Sensitive to bad numerical precision in function and gradient calculation
 - Does not scale to problems with a huge number of parameters
 - proven to work to > ~ 1000 parameters (e.g Higgs combination fits)
 - will not work for training deep-learning models with millions of parameters
 - need to use gradient descent in these cases

External Gradient and Hessian

- Minuit requires the function gradient at each iteration
 - computed by default numerically using a 3 points rule and adaptive step sizes
 - well-tested and robust method
 - essential to having good precision when the gradient is close to zero (near the minimum) to converge rapidly
- Support for external gradients provided by user
 - needed for users exploiting Automatic Differentiation (AD)
- New: Option in Minuit2 to provide external Hessian or only the diagonal of the Hessian (G2) for seeding
 - without providing Hessian, Minuit2 computes G2 numerically
 - using initial user steps is often not good (need good estimates)

New improvements in Minuit2

- Improved debugging
 - can log and return to user all minimisation iteration states
 - can provide a detailed output of each iteration (in debug mode)
- Possibility to add users callback functions at each iteration
- Thread-safety: Minuit2 can work in multi-threads if user provided function can
 - support for likelihood or gradient parallelisation
- Addition of new minimization methods:
 - BFGS: use only standard BFGS formula instead of the default mode of using both BFGS or DFP formula depending on some conditions

Specialized Algorithms for Fitting

When minimising Least-square functions:

$$F(x) = \sum_{k=1}^{n} f_k^2 = \sum_{k=1}^{n} \left(\frac{y_k - T_k(x)}{\sigma_k} \right)^2$$

Hessian
$$H_{ij} = \frac{\partial^2 F(x)}{\partial x_i \partial x_j} = \sum_{k=1}^n 2 \frac{\partial f_k \partial f_k}{\partial x_i \partial x_j} + 2 f_k \frac{\partial^2 f_k}{\partial x_i \partial x_j} \approx \sum_{k=1}^n 2 \frac{\partial f_k \partial f_k}{\partial x_i \partial x_j}$$

$$\mathbf{H} \approx \mathbf{J}^T \mathbf{J}$$

this can be neglected when residuals f are small

Neglect second derivatives of model function: linearisation

- Many algorithms have been developed on this approximation:
 - e.g. Levenberg-Marquardt (GSL), Fumili, ...

Likelihood Fits

► For likelihood functions:

$$\mathcal{L}(x) = -\sum_{k=1}^{n} \log f(y_k | x) \text{ and } H_{ij} = \frac{\partial^2 \mathcal{L}(\theta)}{\partial \theta_i \partial \theta_j} = -\sum_{k=1}^{n} \frac{\partial}{\partial x_i} \left(\frac{1}{f_k} \frac{\partial f_k}{\partial x_j} \right) = \sum_{k=1}^{n} \frac{1}{f_k^2} \frac{\partial f_k \partial f_k}{\partial x_i \partial x_j} - \sum_{k=1}^{n} \frac{1}{f_k} \frac{\partial^2 f_k}{\partial x_i \partial x_j}$$

- the linear approximation is not always valid!
- For binned likelihood fits, can write the likelihood as

$$\mathscr{L}(x) = -\sum_{k=1}^n \log P(n_k | \mu_k(x)) = -\sum_{k=1}^n \log \frac{e^{-\mu_k(x)} \mu_k(x)^{n_k}}{n_k!} \quad \text{and after removing constant terms}$$

$$\mathcal{L}(x) = \sum_{k=1}^{n} \left(\mu_k(x) - n_k \log \mu_k(x) \right)$$

$$H_{ij} = \frac{\partial^2 \mathcal{L}(\theta)}{\partial \theta_i \partial \theta_j} = \sum_{k=1}^n \frac{\partial}{\partial x_i} \left(\frac{\partial \mu_k}{\partial x_j} - \frac{n_k}{\mu_k} \frac{\partial \mu_k}{\partial x_j} \right) = \sum_{k=1}^n \frac{n_k}{\mu_k^2} \frac{\partial \mu_k \partial \mu_k}{\partial x_i \partial x_j} - \sum_{k=1}^n \frac{(n_k - \mu_k)}{\mu_k} \frac{\partial^2 \mu_k}{\partial x_i \partial x_j} \approx \sum_{k=1}^n \frac{n_k}{\mu_k^2} \frac{\partial \mu_k \partial \mu_k}{\partial x_i \partial x_j}$$

this can be neglected it is like a residual f_{ν}

The same algorithms used for least-square fitting can be used!

Specialized Fitting Methods

- Hessian can be computed directly from the first derivatives of the model function
 - It is like a linear fit approximation
- This approximation is also good in the case of binned likelihood fits but not always for standard unbinned maximum likelihood fits
- ► Advantage of linearisation:
 - positive defined Hessian and easy to calculate gradients (one can use a 2-point rule)
 - faster to converge than standard methods (Minuit/BFGS)
- Disadvantage:
 - Initial point need to be close enough to the minimum to consider the approximation $\mathbf{H}_k pprox \mathbf{J}_k^T \mathbf{J}_k$ valid
 - require a more complex interface, needed the Jacobian matrix (number of fit points × number of parameters) at each iteration

New Fumili Algorithm

- New implementation of Fumili algorithm: Fumili2
 - original algorithm from I. Silin implemented in the Cernlib and TFumili class
- It is integrated into Minuit2 library
 - re-using Minuit2 interfaces classes
 - working for both least-square and binned likelihood fits
- Based on trust-region using dogleg step
 - trust region can be scaled using a metric defined by the diagonal of the approximated Hessian

Benchmark Results

- Use a binned likelihood to fit signal peak over some background in a histogram
 - ▶ 1000 bins
 - 7 parameter fits performing numerical convolution
 - repeat fit 1000 times with different data and different initial random parameter values
 - not too far from the minimum

Benchmark Results

Binned likelihood fit to signal peak over some background

New Fumili algorithm (Fumili2) works very well!

Benchmark Results (2)

With initial parameters values further away from minimum

Using a starting point further away we start to see more fit failures!

ROOT Minimization Interface

- ► ROOT provides class **ROOT::Math::Minimizer** as general interface for minimization
- Current default is TMinuit (old Minuit implementation)
 - plan to switch to use Minuit2 as default in the next release
- Implemented by several algorithms:
 - TMinuit
 - Minuit2
 - TFumili
 - GSL minimisers and fitters algorithms (Levenberg-Marquardt)
 - Simulated annealing and Genetic algorithm
 - R-Minimizer: minimiser based on algorithms from R
 - and now from Python: scipy.optimize

Scipy optimizers

- New implementation of ROOT::Math::Minimizer using scipy.optimize (from O. Zapata)
- scipy.optimize.minimize provides several minimization algorithms

scipy.optimize.minimize

```
scipy.optimize.minimize(fun, x0, args=(), method=None, jac=None, hess=None, hessp=None, bounds=None, constraints=(), tol=None, callback=None, options=None) #
```

method: str or callable, optional

Type of solver. Should be one of

- 'Nelder-Mead' (see here)
- 'Powell' (see here)
- 'CG' (see here)
- 'BFGS' (see here)
- 'Newton-CG' (see here)
- 'L-BFGS-B' (see here)
- 'TNC' (see here)
- 'COBYLA' (see here)
- 'SLSQP' (see here)
- 'trust-constr'(see here)
- 'dogleg' (see here)
- 'trust-ncg' (see here)
- 'trust-exact' (see here)
- 'trust-krylov' (see here)

Benchmark with Scipy

Varying performance of scipy minimisers

Time for CG is > 600 ms

- Minuit2 performs better!
- Fitting using AD (with a different fit than before)
 - without providing gradients scipy optimisers perform worse
 - e.g. number of failures for TNC is more than 80%

- Jupyter-friendly Python frontend to Minuit2 C++ library in ROOT
- Part of Scikit-HEP project, developed in sync with ROOT
- Backend in particle and astroparticle physics libraries <u>zfit</u>, <u>pyhf</u>, <u>gammapy</u>, <u>flavio</u>, <u>ctapipe</u>, ...
- Easy to install: pip install iminuit installs precompiled binary package on all major platforms
- Comprehensive documentation with many tutorials
- 100 % test coverage
- Batteries included: shipped with common cost functions for statistical fits
 - Binned and unbinned maximum-likelihood
 - Template fits (new): including mix of templates and parametric models <u>HD</u>, A. Abdelmotteleb EPJ C 82, 1043 (2022)
 - Non-linear regression with (optionally robust) weighted least-squares
 - Gaussian penalty terms
 - Cost functions can be combined by adding: total_cost = cost_1 + cost_2
- Support for SciPy minimisers as alternatives to Minuit's Migrad algorithm
- Smart visualization of fit results in Jupyter notebooks + interactive fits

iMinuit benchmarks available at https://iminuit.readthedocs.io/en/stable/benchmark.html

Example fit with interactive fitting widget

```
import numpy as np
 from iminuit import Minuit
 from scipy.stats import norm
 x = norm.rvs(size=1000, random_state=1)
 # Negative unbinned log-likelihood with a normal PDF;
 # ready-made cost functions like this are in iminuit.cost
 def nll(mu, sigma):
 return -np.sum(norm.logpdf(x, mu, sigma))
 m = Minuit(nll, mu=0, sigma=1)
 m.limits["mu"] = (-1, 1)
 m.limits["sigma"] = (0, np.inf)
 m.migrad()  # find minimum
 m.hesse()  # compute uncertainties
✓ 0.0s
                                                                    Python
```


1

Conclusions

- Minuit is more than 50 years old but it seems to be still the best minimization algorithm for HEP fitting problems
- New algorithm (Fumili2) for least-square and binned likelihood fit
- ▶ Recent improvements in Minuit2:
 - support for external gradient and Hessian (for AD users)
 - improve logging and usability
- Minuit2 will be made the default minimiser in the next ROOT version
- Python version (iminuit) available also for the Python user community
- Future work:
 - implement support for non-trivial parameter constraints

References

- Minuit2:
 - Users guide
 - Minuit Tutorial on Function Minimization (F. James)
- ROOT Minimisers
 - ROOT::Math::Minimizer
- scipy:
 - scipy.optimize.minimize documentation
 - scipy ROOT interface
- iMinuit
 - https://iminuit.readthedocs.io/en/stable/

Minuit Algorithm

- ▶ Start with an initial approximation of inverse Hessian, $H = (\nabla^2 f(x))^{-1}$
 - e.g. use diagonal second derivatives
- lterate:
 - compute new step direction as $p_k = -Hg$ where $g = \nabla f(x_k)$
 - perform line search for optimal point $x_{k+1} = x_k + \alpha p_k$
 - $s_k = x_{k+1} x_k$
 - compute the new gradient g at x_{k+1} and $y_k = g_{k+1} g_k$
 - Update inverse Hessian matrix H_{ν} according to BFGS or DFP update formula

$$\mathsf{BFGS}: H_{k+1} = (I - \frac{s_k y_k^T}{y_k^T s_k}) H_k (I - \frac{y_k s_k^T}{y_k^T s_k}) + \frac{s_k s_k^T}{y_k^T s_k} \qquad \mathsf{DFP}: H_{k+1} = H_k + \frac{s_k s_k^T}{s_k^T y_k} - \frac{H_k y_k y_k^T H_k}{y_k^T H_k y_k}$$

- stop iteration when the Expected Distance from the Minimum (EDM) $\rho = g^T H g$ is small
- ► EDM provides a scale-invariant quantity to tell the convergence of method.
 - This is unique in Minuit!

Fumili Algorithm

- Old algorithm proposed already in 1961 by I. Silin
- ► Implemented later in the CERN library and made also available to ROOT with TFumili class.
 - It uses the Hessian approximation combined with a trust region method.
 - a multidimensional parallelepiped ("box") is defined around the point and used its intersection with the Newton direction for the next step
 - size of the parallelepiped changes dynamically
 - depending on the function improvements and the expectation from a quadratic approximation.
- ► Faster than Minuit for least-square fits when the starting point is close enough to the solution

Benchmark Results

Use a binned likelihood to fit signal peak over some background

Benchmark Results (2)

Using initial parameters values further away from minimum solution

Benchmark Results (2)

Using initial parameters values further away from minimum solution

Using a starting point further away we see also longer fitting time

Benchmark using Scipy Minimisers

Poor performance of scipy with respect to Minuit!

Fitting time using AD

► Fitting time in Minuit2 for different sizes: AD vs Numerical differentiation

High performance fitting in Python with iminuit

Using Python not performance bottleneck, if numerical code is accelerated with Numba JIT

number of data points

- Crucial for high performance: accelerated parallelized SIMD-friendly PDF and accelerated unbinned likelihood function
- Benchmarks for unbinned likelihood fit of normal distribution with parameters μ , σ

Scipy using Numerical Derivatives

Fitting time and failures in Scipy with numerical gradients

