New Developments in Minuit2

L. Moneta, O. Zapata, H. Dembinsky
Introduction

Minuit
- Popular minimisation program developed in the 1970s by F. James.
- It is a variable-metric method (quasi-Newton method) based on the DFP / BFGS update of the inverse Hessian matrix.
- Works extremely well for fitting (e.g. parameter estimation) and it has been used extensively in HEP.
- Available in ROOT since the beginning in the TMinuit class.

Minuit2
- Improved version re-written in C++ classes of same algorithm (MIGRAD)
- Available both in ROOT and as a standalone version
- Being used in the statistical analysis of LHC experiments
- iMinuit: python package built on top of Minuit2
 - used in large astroparticle physics experiments
Characteristics of Minuit

Works very well, superior to gradient descent methods
- Much less number of iterations to converge
- No need to perform matrix inversion at each iteration
- Approximate Hessian converges to true Hessian at the minimum
- Regularisation when Hessian is not positive defined
 - add offset to the diagonal of H to make it positively defined
- Self-correcting if the Hessian approximation is not good enough

Disadvantages:
- Sensitive to initial parameters, it is a local minimiser and can get stuck in local minima
- Sensitive to bad numerical precision in function and gradient calculation
- Does not scale to problems with a huge number of parameters
 - proven to work to > ~ 1000 parameters (e.g. Higgs combination fits)
 - will not work for training deep-learning models with millions of parameters
 - need to use gradient descent in these cases
Minuit requires the function gradient at each iteration
 ● computed by default numerically using a 3 points rule and adaptive step sizes
 ▪ well-tested and robust method
 ▪ essential to having good precision when the gradient is close to zero (near the minimum) to converge rapidly

Support for external gradients provided by user
 ● needed for users exploiting Automatic Differentiation (AD)

New: Option in Minuit2 to provide external Hessian or only the diagonal of the Hessian (G2) for seeding
 ● without providing Hessian, Minuit2 computes G2 numerically
 ● using initial user steps is often not good (need good estimates)
New improvements in Minuit2

- **Improved debugging**
 - can log and return to user all minimisation iteration states
 - can provide a detailed output of each iteration (in debug mode)

- **Possibility to add users callback functions at each iteration**

- **Thread-safety**: Minuit2 can work in multi-threads if user provided function can
 - support for likelihood or gradient parallelisation

- **Addition of new minimization methods**:
 - **BFGS**: use only standard BFGS formula instead of the default mode of using both BFGS or DFP formula depending on some conditions
Specialized Algorithms for Fitting

When minimising Least-square functions:

\[F(x) = \sum_{k=1}^{n} f_k^2 = \sum_{k=1}^{n} \left(\frac{y_k - T_k(x)}{\sigma_k} \right)^2 \]

Hessian

\[H_{ij} = \frac{\partial^2 F(x)}{\partial x_i \partial x_j} = \sum_{k=1}^{n} 2 \frac{\partial f_k}{\partial x_i} \frac{\partial f_k}{\partial x_j} + 2 f_k \frac{\partial^2 f_k}{\partial x_i \partial x_j} \approx \sum_{k=1}^{n} 2 \frac{\partial f_k}{\partial x_i} \frac{\partial f_k}{\partial x_j} \]

\[H \approx J^T J \]

this can be neglected when residuals \(f \) are small

Neglect second derivatives of model function: linearisation

Many algorithms have been developed on this approximation:

- e.g. Levenberg-Marquardt (GSL), Fumili, …
For likelihood functions:

\[\mathcal{L}(x) = - \sum_{k=1}^{n} \log f(y_k \mid x) \]
and
\[H_{ij} = \frac{\partial^2 \mathcal{L}(\theta)}{\partial \theta_i \partial \theta_j} = - \sum_{k=1}^{n} \frac{\partial}{\partial x_i} \left(\frac{1}{f_k} \frac{\partial f_k}{\partial x_j} \right) = \sum_{k=1}^{n} \frac{1}{f_k^2} \frac{\partial f_k}{\partial x_i} \frac{\partial f_k}{\partial x_j} - \sum_{k=1}^{n} \frac{1}{f_k} \frac{\partial^2 f_k}{\partial x_i \partial x_j} \]

the linear approximation is not always valid!

For binned likelihood fits, can write the likelihood as

\[\mathcal{L}(x) = - \sum_{k=1}^{n} \log P(n_k \mid \mu_k(x)) = - \sum_{k=1}^{n} \log \frac{e^{-\mu_k(x)} \mu_k(x)^{n_k}}{n_k!} \]
and after removing constant terms

\[\mathcal{L}(x) = \sum_{k=1}^{n} \left(\mu_k(x) - n_k \log \mu_k(x) \right) \]

\[H_{ij} = \frac{\partial^2 \mathcal{L}(\theta)}{\partial \theta_i \partial \theta_j} = \sum_{k=1}^{n} \frac{\partial}{\partial x_i} \left(\frac{\partial \mu_k}{\partial x_j} - \frac{n_k \mu_k}{\mu_k} \frac{\partial \mu_k}{\partial x_j} \right) = \sum_{k=1}^{n} \frac{n_k}{\mu_k^2} \frac{\partial \mu_k}{\partial x_i} \frac{\partial \mu_k}{\partial x_j} - \sum_{k=1}^{n} \frac{(n_k - \mu_k)}{\mu_k} \frac{\partial^2 \mu_k}{\partial x_i \partial x_j} \approx \sum_{k=1}^{n} \frac{n_k}{\mu_k^2} \frac{\partial \mu_k}{\partial x_i} \frac{\partial \mu_k}{\partial x_j} \]
this can be neglected
it is like a residual \(f_k \)

The same algorithms used for least-square fitting can be used!
Hessian can be computed directly from the first derivatives of the model function
- It is like a linear fit approximation

This approximation is also good in the case of binned likelihood fits but not always for standard unbinned maximum likelihood fits

Advantage of linearisation:
- positive defined Hessian and easy to calculate gradients (one can use a 2-point rule)
- faster to converge than standard methods (Minuit/BFGS)

Disadvantage:
- Initial point need to be close enough to the minimum to consider the approximation $H_k \approx J_k^T J_k$ valid
- require a more complex interface, needed the Jacobian matrix (number of fit points × number of parameters) at each iteration
New Fumili Algorithm

- New implementation of Fumili algorithm: **Fumili2**
 - original algorithm from I. Silin implemented in the Cernlib and TFumili class

- It is integrated into Minuit2 library
 - re-using Minuit2 interfaces classes
 - working for both least-square and binned likelihood fits

- Based on trust-region using dogleg step
 - trust region can be scaled using a metric defined by the diagonal of the approximated Hessian
Use a binned likelihood to fit signal peak over some background in a histogram

- 1000 bins
- 7 parameter fits performing numerical convolution
- repeat fit 1000 times with different data and different initial random parameter values
 - not too far from the minimum
Benchmark Results

- Binned likelihood fit to signal peak over some background

- New Fumili algorithm (**Fumili2**) works very well!
With initial parameters values further away from minimum

Using a starting point further away we start to see more fit failures!
ROOT Minimization Interface

- ROOT provides class **ROOT::Math::Minimizer** as general interface for minimization.
- Current default is TMinuit (old Minuit implementation)
 - plan to switch to use Minuit2 as default in the next release.
- Implemented by several algorithms:
 - TMinuit
 - Minuit2
 - TFumili
 - GSL minimisers and fitters algorithms (Levenberg-Marquardt)
 - Simulated annealing and Genetic algorithm
 - R-Minimizer : minimiser based on algorithms from R
 - and now from Python: **scipy.optimize**
New implementation of ROOT::Math::Minimizer using `scipy.optimize` (from O. Zapata)

`scipy.optimize.minimize` provides several minimization algorithms

```python
scipy.optimize.minimize(fun, x0, args=(), method=None, jac=None, hess=None, hessp=None, bounds=None, constraints=(), tol=None, callback=None, options=None)
```
Varying performance of \texttt{scipy} minimisers

- Minuit2 performs better!

Fitting using AD (with a different fit than before)

- without providing gradients \texttt{scipy} optimisers perform worse
 - \textit{e.g. number of failures for TNC is more than 80%}

Time for CG is > 600 ms
• Jupyter-friendly Python frontend to Minuit2 C++ library in ROOT
• Part of Scikit-HEP project, developed in sync with ROOT
• Backend in particle and astroparticle physics libraries zfit, pyhf, gammapy, flavio, ctapipe, ...
• Easy to install: pip install iminuit installs precompiled binary package on all major platforms
• Comprehensive documentation with many tutorials
• 100 % test coverage

• Batteries included: shipped with common cost functions for statistical fits
 • Binned and unbinned maximum-likelihood
 • Template fits (new): including mix of templates and parametric models HD, A. Abdelmotteleb EPJ C 82, 1043 (2022)
 • Non-linear regression with (optionally robust) weighted least-squares
 • Gaussian penalty terms
 • Cost functions can be combined by adding: total_cost = cost_1 + cost_2
• Support for SciPy minimisers as alternatives to Minuit’s Migrad algorithm
• Smart visualization of fit results in Jupyter notebooks + interactive fits

Example fit with interactive fitting widget

```python
import numpy as npromiminuit import Minuit
from scipy.stats import norm

x = norm.rvs(size=1000, random_state=1)

# Negative unbinned log-likelihood with a normal PDF;
def nll(mu, sigma):
    return -np.sum(norm.logpdf(x, mu, sigma))

m = Minuit(nll, mu=0, sigma=1)
m.limits['mu'] = (-1, 1)
m.limits['sigma'] = (0, np.inf)
m.migrad()  # find minimum
m.hesse()   # compute uncertainties
```

![Migrad](image)
Minuit is more than 50 years old but it seems to be still the best minimization algorithm for HEP fitting problems.

- New algorithm (Fumili2) for least-square and binned likelihood fit.
- Recent improvements in Minuit2:
 - support for external gradient and Hessian (for AD users)
 - improve logging and usability
- Minuit2 will be made the default minimiser in the next ROOT version.
- Python version (iminuit) available also for the Python user community.
- Future work:
 - implement support for non-trivial parameter constraints.
References

Minuit2:
- Users guide
- Minuit Tutorial on Function Minimization (F. James)

ROOT Minimisers
- ROOT::Math::Minimizer

scipy:
- scipy.optimize.minimize documentation
- scipy ROOT interface

iMinuit
Backup Slides
Minuit Algorithm

Start with an initial approximation of inverse Hessian, \(H = (\nabla^2 f(x))^{-1} \)

- e.g. use diagonal second derivatives

Iterate:

- compute new step direction as \(p_k = -Hg \) where \(g = \nabla f(x_k) \)
- perform line search for optimal point \(x_{k+1} = x_k + \alpha p_k \)
 - \(s_k = x_{k+1} - x_k \)
- compute the new gradient \(g \) at \(x_{k+1} \) and \(y_k = g_{k+1} - g_k \)
- Update inverse Hessian matrix \(H_k \) according to BFGS or DFP update formula

\[
\text{BFGS: } H_{k+1} = (I - \frac{s_k y_k^T}{y_k^T s_k}) H_k (I - \frac{y_k s_k^T}{y_k^T s_k}) + \frac{s_k s_k^T}{y_k^T s_k} \\
\text{DFP: } H_{k+1} = H_k + \frac{s_k s_k^T}{y_k^T y_k} - \frac{H_k y_k y_k^T H_k}{y_k^T H_k y_k}
\]

- stop iteration when the Expected Distance from the Minimum (EDM) \(\rho = g^T H g \) is small

EDM provides a scale-invariant quantity to tell the convergence of method.
- This is unique in Minuit!
Fumili Algorithm

- Old algorithm proposed already in 1961 by I. Silin
- Implemented later in the CERN library and made also available to ROOT with TFumili class.
 - It uses the Hessian approximation combined with a trust region method.
 - A multidimensional parallelepiped ("box") is defined around the point and used its intersection with the Newton direction for the next step
 - Size of the parallelepiped changes dynamically depending on the function improvements and the expectation from a quadratic approximation.

- Faster than Minuit for least-square fits when the starting point is close enough to the solution
Use a binned likelihood to fit signal peak over some background

1000 bins - 7 parameters repeat fit 1000 times with different data and different initial parameter values
Using initial parameters values further away from minimum solution

Using a starting point further away we start to see more fit failures!
Using initial parameters values further away from minimum solution

Using a starting point further away we see also longer fitting time
BENCHMARK USING SCIPY MINIMISERS

Using Scipy Minimizer interface from O. Zapata

Poor performance of scipy with respect to Minuit!

<table>
<thead>
<tr>
<th>Method</th>
<th>Mean (time)</th>
<th>Mean (chi2/ndf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minuit2 (time)</td>
<td>0.002235</td>
<td>1.009</td>
</tr>
<tr>
<td>Scipy_BFGS (time)</td>
<td>0.009415</td>
<td>1.008</td>
</tr>
<tr>
<td>Scipy_TNC (time)</td>
<td>0.005361</td>
<td>1.008</td>
</tr>
<tr>
<td>Scipy_Nelder_Mead (time)</td>
<td>0.02479</td>
<td>1.008</td>
</tr>
<tr>
<td>Scipy_CG (time)</td>
<td>0.6233</td>
<td>1.026</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Mean (# function calls)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minuit2 # function calls</td>
<td>78.5</td>
</tr>
<tr>
<td>Scipy_BFGS # function calls</td>
<td>43.64</td>
</tr>
<tr>
<td>Scipy_TNC # function calls</td>
<td>717.4</td>
</tr>
<tr>
<td>Scipy_Nelder_Mead # function calls</td>
<td>4496</td>
</tr>
<tr>
<td>Scipy_CG # function calls</td>
<td>26.14</td>
</tr>
</tbody>
</table>
Fitting time in Minuit2 for different sizes: AD vs Numerical differentiation
High performance fitting in Python with iminuit

- Using Python not performance bottleneck, if numerical code is accelerated with Numba JIT
- Crucial for high performance: accelerated parallelized SIMD-friendly PDF and accelerated unbinned likelihood function
- Benchmarks for unbinned likelihood fit of normal distribution with parameters μ, σ

![Graph showing runtime comparison between different methods.](image)

- iminuit
- iminuit.cost.UnbinnedNLL
- numba-accelerated normal distribution from numba-stats package
- automatic parallelization and fastmath

Up to 100x faster than RooFit (C++) with NumCPU (parallel computation) and BatchMode (= fastmath) options
Fitting time and failures in Scipy with numerical gradients

Fitting time for scipy minimizers

Fit failures by scipy minimizers