
ROOT’s RNTuple I/O Subsystem: The Path to Production

Jakob Blomer, Philippe Canal, Axel Naumann, Javier Lopez-Gomez, Giovanna Lazzari Miotto
CHEP 2023, Norfolk, U.S.
May 8, 2023

Introduction

Based on 25+ years of TTree experience, RNTuple is a redesigned I/O subsystem aiming at

• Less disk and CPU usage
• Significantly smaller files
• Significantly better throughput, often by factors

• Systematic use of data checksums and runtime exceptions to prevent silent I/O errors
• Efficient support of modern hardware: asynchronous & parallel I/O, many-core friendly, GPU data transfer
• Native support for object stores in addition to local and remote ROOT files
• Binary format defined in a dedicated specification

Note: TTree remains

available in ROOT as

legacy support

May 8, 2023 RNTuple – CHEP 2023 1 / 13

https://github.com/root-project/root/blob/master/tree/ntuple/v7/doc/specifications.md

Introduction

Based on 25+ years of TTree experience, RNTuple is a redesigned I/O subsystem aiming at

• Less disk and CPU usage
• Significantly smaller files
• Significantly better throughput, often by factors

• Systematic use of data checksums and runtime exceptions to prevent silent I/O errors
• Efficient support of modern hardware: asynchronous & parallel I/O, many-core friendly, GPU data transfer
• Native support for object stores in addition to local and remote ROOT files
• Binary format defined in a dedicated specification

Note: TTree remains

available in ROOT as

legacy support

May 8, 2023 RNTuple – CHEP 2023 1 / 13

https://github.com/root-project/root/blob/master/tree/ntuple/v7/doc/specifications.md

Performance: File Size

Size on disk, zstd compressed “final-stage” ntuples

0

0.5

1

1.5

2

2.5

ki
B

 /
ev

en
t

RNTuple

TTree

0
0.2
0.4
0.6
0.8

1

R
N

T
up

le
 /

T
T

re
e

99 %

75 %
66 %

31 %

"LHCb" "H1" "CMS" "ATLAS OpenData"

Fully flat ntuple Objectified collections (RVec<Muon>) All vectors (RVec<Muon_pt>)

(See backup slides for a description of the benchmarks)

Main contributors to space savings:

1. More compact representation of
collections and bools

2. Data encoding optimized for better
compression ratio (byte-splitting, delta
encoding, etc.)

See next talk for ATLAS xAOD figures

May 8, 2023 RNTuple – CHEP 2023 2 / 13

https://indico.jlab.org/event/459/contributions/11559/

Performance: File Size

Size on disk, zstd compressed “final-stage” ntuples

0

0.5

1

1.5

2

2.5

ki
B

 /
ev

en
t

RNTuple

TTree

0
0.2
0.4
0.6
0.8

1

R
N

T
up

le
 /

T
T

re
e

99 %

75 %
66 %

31 %

"LHCb" "H1" "CMS" "ATLAS OpenData"

Fully flat ntuple Objectified collections (RVec<Muon>) All vectors (RVec<Muon_pt>)

(See backup slides for a description of the benchmarks)

Main contributors to space savings:

1. More compact representation of
collections and bools

2. Data encoding optimized for better
compression ratio (byte-splitting, delta
encoding, etc.)

See next talk for ATLAS xAOD figures

May 8, 2023 RNTuple – CHEP 2023 2 / 13

https://indico.jlab.org/event/459/contributions/11559/

Performance: Time-to-Plot

Single-core analysis throughput using RDataFrame

0

0.5

1

1.5

2

2.5

3

R
N

T
up

le
 S

pe
ed

up
 w

rt
. T

T
re

e "LHCb" "H1" "CMS" "ATLAS OpenData"

RAM Disk Solid State Disk Spinning Disk XRootD, 100GbE, 0.3ms

Code

Main contributors to higher throughput:

1. Fewer bytes to read and decompress due
to more compact data representation

2. Asynchronous reading
3. Parallel I/O improves SSD throughput
4. Fewer instructions in the I/O code path

See that talk on the effect of bulk I/O
See that poster on RNTuple I/O parameter optimization

May 8, 2023 RNTuple – CHEP 2023 3 / 13

https://github.com/jblomer/iotools/tree/chep23
https://indico.jlab.org/event/459/contributions/11565/
https://indico.jlab.org/event/459/contributions/11600/

Performance: Time-to-Plot

Single-core analysis throughput using RDataFrame

0

0.5

1

1.5

2

2.5

3

R
N

T
up

le
 S

pe
ed

up
 w

rt
. T

T
re

e "LHCb" "H1" "CMS" "ATLAS OpenData"

RAM Disk Solid State Disk Spinning Disk XRootD, 100GbE, 0.3ms

Code

Main contributors to higher throughput:

1. Fewer bytes to read and decompress due
to more compact data representation

2. Asynchronous reading
3. Parallel I/O improves SSD throughput
4. Fewer instructions in the I/O code path

See that talk on the effect of bulk I/O
See that poster on RNTuple I/O parameter optimization

May 8, 2023 RNTuple – CHEP 2023 3 / 13

https://github.com/jblomer/iotools/tree/chep23
https://indico.jlab.org/event/459/contributions/11565/
https://indico.jlab.org/event/459/contributions/11600/

Performance Comparison with Parquet and HDF5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

kB
 /

ev
en

t Size on disk, CMS Higgs4Leptons (84 branches)

RNTuple
Parquet

HDF5/row

HDF5/column

Size on disk, CMS Higgs4Leptons (84 branches)

0

0.2

0.4

0.6

0.8

1

un
co

m
pr

es
se

d
G

B
 /

s

HDF5 HDF5

SSD Ceph-FS

CMS Higgs4Leptons (10/84 branches)

0

0.5

1

1.5

2

2.5

3

un
co

m
pr

es
se

d
G

B
 /

s

SSD Ceph-FS

LHCb B2HHH (10/26 branches)
RNTuple
Parquet
HDF5/row
HDF5/column

• Clear advantage of RNTuple over Parquet and HDF5, both in file size and throughput
• HDF5 results may vary depending on the effort put into adapting inherent tensor layout to columnar access

Code ACAT’21

May 8, 2023 RNTuple – CHEP 2023 4 / 13

https://github.com/jblomer/iotools/tree/acat21/compare
https://iopscience.iop.org/article/10.1088/1742-6596/2438/1/012118/pdf

First Scale-Out Results

Distributed RDataFrame on 1 TB LHCb ntuples in a DAOS object store cluster, 100 Gbit/s network

1 2 3 4 5 6 7

Nodes

0

5

10

15

20

25

30

35

40

T
hr

ou
gh

pu
t d

at
a

to
 h

is
to

gr
am

 [G
B

/s
] 16 32 48 64 80 96 112

Cores

1 2 3 4 5 6 7
0

100

200

300

400

500

T
hr

ou
gh

pu
t p

er
 c

or
e

[M
B

/s
]

Paper

• Demonstrates that RNTuple makes
decent use of high-speed distributed
object store

• Follow-up: RNTuple scalability
optimization guided by an
“infinite-speed” artificial data source

May 8, 2023 RNTuple – CHEP 2023 5 / 13

https://link.springer.com/article/10.1007/s10586-022-03757-2

First Scale-Out Results

Distributed RDataFrame on 1 TB LHCb ntuples in a DAOS object store cluster, 100 Gbit/s network

1 2 3 4 5 6 7

Nodes

0

5

10

15

20

25

30

35

40

T
hr

ou
gh

pu
t d

at
a

to
 h

is
to

gr
am

 [G
B

/s
] 16 32 48 64 80 96 112

Cores

1 2 3 4 5 6 7
0

100

200

300

400

500

T
hr

ou
gh

pu
t p

er
 c

or
e

[M
B

/s
]

Paper

• Demonstrates that RNTuple makes
decent use of high-speed distributed
object store

• Follow-up: RNTuple scalability
optimization guided by an
“infinite-speed” artificial data source

May 8, 2023 RNTuple – CHEP 2023 5 / 13

https://link.springer.com/article/10.1007/s10586-022-03757-2

Format Transition and Compatibility

For maximum optimization opportunities, RNTuple breaks backwards compatibility to TTree.
At the same time, RNTuple aims at a smooth integration with the well-established ROOT/HEP ecosystem.

• For RDataFrame analysis code: no change required1

• Consistent tooling:
• RBrowser support
• Disk-to-disk converter TTree → RNTuple
• hadd support under construction

• RNTuple data are stored in ROOT files and can be accessed the usual way locally and remotely through
XRootD and HTTP; new: transparent object store access (DAOS, S3) See that talk

• RNTuple adopts TTree’s I/O customization rules and schema evolution system (under construction)
• Native RNTuple API for writing and reading, targeting frameworks:

new API following modern C++ core guidelines, see backup slides for examples
• TTree::Draw will not be replicated directly in RNTuple; a possible replacement on top of RDataFrame is

under discussion.

Example of error handling:

std::unique_ptr<RNTupleReader> reader;
try {

reader = RNTupleReader::Open("Events", "data.root");
} catch (const RException &err) {

// I/O error, e.g. file not found;
}
...
// Throws an exception if "H.charge" is of type int;

auto viewCharge = reader->GetView<double>("H.charge");

1Soon, RDataFrame will auto-detect input format TTree vs RNTuple.
May 8, 2023 RNTuple – CHEP 2023 6 / 13

https://indico.jlab.org/event/459/contributions/11329/

Format Transition and Compatibility

For maximum optimization opportunities, RNTuple breaks backwards compatibility to TTree.
At the same time, RNTuple aims at a smooth integration with the well-established ROOT/HEP ecosystem.

• For RDataFrame analysis code: no change required1

• Consistent tooling:
• RBrowser support
• Disk-to-disk converter TTree → RNTuple
• hadd support under construction

• RNTuple data are stored in ROOT files and can be accessed the usual way locally and remotely through
XRootD and HTTP; new: transparent object store access (DAOS, S3) See that talk

• RNTuple adopts TTree’s I/O customization rules and schema evolution system (under construction)
• Native RNTuple API for writing and reading, targeting frameworks:

new API following modern C++ core guidelines, see backup slides for examples
• TTree::Draw will not be replicated directly in RNTuple; a possible replacement on top of RDataFrame is

under discussion.

Example of error handling:

std::unique_ptr<RNTupleReader> reader;
try {

reader = RNTupleReader::Open("Events", "data.root");
} catch (const RException &err) {

// I/O error, e.g. file not found;
}
...
// Throws an exception if "H.charge" is of type int;

auto viewCharge = reader->GetView<double>("H.charge");

1Soon, RDataFrame will auto-detect input format TTree vs RNTuple.
May 8, 2023 RNTuple – CHEP 2023 6 / 13

https://indico.jlab.org/event/459/contributions/11329/

RNTuple Data in the RBrowser

May 8, 2023 RNTuple – CHEP 2023 7 / 13

Early adoption

Framework integration
CMSSW RNTuple NanoAOD output module

since 2021
Athena support for writing and reading ATLAS

xAOD (PHYS & PHYSLITE) files
since 2023
See also next talk

Continuous effort on EDM support and framework
integration. RNTuple development & required feature
set guided by early adoption; onboarding one-by-one to
match development bandwidth.

3rd party
uproot Independent implementation; validated

RNTuple format specification
libRNTupleLite Planned low-level C API to support

languages other than C++ and Python

libCore libROOTIOLite

libROOTNTupleLitelibRIO

libROOTNTuple

C
Sh

im

Depends on LLVM/cling

May 8, 2023 RNTuple – CHEP 2023 8 / 13

https://indico.jlab.org/event/459/contributions/11559/

Expressiveness

The RNTuple I/O supports arbitrary combinations of a well-defined set of C++ types

Type Examples EDM Coverage RNTuple Status
PoD bool, int, float

Flat n-tuple

Reduced
AOD

Full AOD /
RECO

Available
Vector<PoD> RVec<float> Available
String std::string Available
Nested vector RVec<RVec<float>> Available
User-defined classes "TEvent" Available
User-defined collections "TCudaVector" Available
stdlib collections std::map, std::tuple Avail. / Testing
Variadic types std::variant, std::unique_ptr Avail. / Testing
Intra-event references "&Electrons[7]" In design

Low-precision
floating points

Float16_t, Double32_t

Optimization benefitting all EDMs
Testing

Custom precision and range In design
Precision cascades In designACAT’22

May 8, 2023 RNTuple – CHEP 2023 9 / 13

https://indico.cern.ch/event/1106990/contributions/4991262/

Writing and Deriving Data

Entry-by-entry writing
• Available, including multi-threaded writing
• Includes “late model extensions” to accommodate for frameworks’ on-demand schema definition
• Planned: RNTuple output from RDataFrame::Snapshot

• R&D: reducing contention of highly parallel writes

Reshaping data: dataset derivation without decompressing / deserialization
• Fast merging of files, merging of clusters, discarding columns (fast “CloneTree”)
• Under construction

Data combinatorics: virtual data sets
• Friends (available), chains (under construction)
• R&D program in approval on more advanced use cases, such as stored filters, indexed joins, and provenance

meta-data; this is considered a potential extension after the first production release

May 8, 2023 RNTuple – CHEP 2023 10 / 13

Demonstrator: Zero-Copy Merge
Details Code

RNTuple proof-of-concept exploitation of modern file systems’ block sharing support.

May 8, 2023 RNTuple – CHEP 2023 11 / 13

https://indico.cern.ch/event/1186743/contributions/4998957/attachments/2502360/4298822/CERN%20Internship%20Presentation.pdf
https://github.com/root-project/root/pull/11155

How to try out RNTuple

• Take a ROOT package built with C++17 for access to the experimental classes

• Start with tutorials in tutorials/v7/ntuple, e. g. ntpl004_dimuon.C:

May 8, 2023 RNTuple – CHEP 2023 12 / 13

Summary & Outlook

ROOT RNTuple is a leap in data throughput and storage efficiency
• Significantly smaller files and faster reads compared to TTree
• Efficient use of modern devices and storage systems such as SSDs, object stores, accelerators
• Work in progress with first successful integration efforts:

CMS & ATLAS frameworks, RDataFrame, RBrowser, XRootD, TTree data importer

Roadmap to production use
• Stable binary format by the end of 2024

• Backwards compatibility guarantee as of this point
• Timeframe for a first production release

• For HL-LHC, we expect RNTuple to cover the TTree use cases

• Next milestones:
• Validation: RDataFrame version of the Analysis Grand Challenge with RNTuple data (see that talk)
• Scale-out tests on big storage sites
• Onboarding of full AOD/RECO formats

May 8, 2023 RNTuple – CHEP 2023 13 / 13

https://indico.jlab.org/event/459/contributions/11582/

Backup Slides

Breakdown of the RNTuple On-Disk Format

.

column offset
“byte offset”

Anchor

Header Page Page Group

Cluster

Cluster Group

FooterPage List

struct Event {
int fId;
vector<Particle> fPtcls;

};
struct Particle {

float fE;
vector<int> fIds;

};

Cluster

• Block of consecutive complete events

• Defaults to 50 MB compressed

Page

• Unit of (de-)compression

• Defaults to 64 kB uncompressed

• Not necessarily aligned on event boundary
Format specification

https://github.com/root-project/root/blob/master/tree/ntuple/v7/doc/specifications.md

RNTuple Read Pattern for Analysis Tasks

.
Anchor

Header Page Page Group𝒪(100 kB)

Cluster 𝒪(100 MB)

Cluster Group 𝒪(100 GB)

FooterPage List

struct Event {
int fId;
vector<Particle> fPtcls;

};
struct Particle {

float fE;
vector<int> fIds;

};

1. File open: read anchor, header, footer (once)
2. Read page list (one per cluster group)
3. Background thread: read-ahead page groups for the next k clusters in vector reads, close-by byte ranges get

coalesced

Benchmark Descriptions I/II
Data Code

LHCb run 1 open data B2HHH
• Dense reading (> 75 %): 18/26 branches
• Fully flat data model
• 8.5 million events
• 24 k selected events

B_mass_copy
Entries 23895

Mean 5262

Std Dev 75.02

5050 5100 5150 5200 5250 5300 5350 5400 5450 5500
]2 [MeV/cKKKm

0

50

100

150

200

250

300

350

B_mass_copy
Entries 23895

Mean 5262

Std Dev 75.02

Control Plot

H1 micro dst [×10]
• Medium dense reading (∼ 10 %): 16/152 branches
• Event substructure: vector of jets etc.
• 2.8 million events
• 75 k selected events

Entries 75250

Mean 0.1551

Std Dev 0.008494

0.13 0.135 0.14 0.145 0.15 0.155 0.16 0.165 0.17

]2[GeV/cπK - mππKm

0

1000

2000

3000

4000

5000

Entries 75250

Mean 0.1551

Std Dev 0.008494

dm_d

Control Plot

https://root.cern.ch/files/RNTuple/chep23
https://github.com/jblomer/iotools/tree/chep23

Benchmark Descriptions II/II
Data Code

CMS nanoAOD June 2019
• Sparse reading (< 1 %): 6/1479 branches
• Event substructure: vector of jets etc.
• 1.6 million events
• 141 k selected events

Dimuon_mass_copy

Entries 141589

Mean 31.18

Std Dev 26.98

1 10 210
 (GeV)µµm

1

10

210

310E
ve

nt
s

N

Dimuon_mass_copy

Entries 141589

Mean 31.18

Std Dev 26.98

η
ω,ρ

φ
ψJ/

'ψ
Y(1,2,3S) Z

CMS Open Data -1 = 11.6 fb
int

 = 8 TeV, Ls

Control Plot

ATLAS OpenData
• Medium dense reading (∼ 15 %): 13/81 branches
• Only vectors: vector of muon pt, muon eta, etc.
• 7.8 million events
• 76 k selected events

1000

2000

3000

4000

5000

6000

7000

8000

E
v
e

n
ts

Data

Background

Signal + Bkg.

Signal

ATLAS Open Data
-1= 13 TeV, 10 fbs

110 120 130 140 150 160

[GeV]γγm

125−

0

125

D
a
ta

 -
 B

kg
.

Control Plot

https://root.cern.ch/files/RNTuple/chep23
https://github.com/jblomer/iotools/tree/chep23

Benchmark Hardware and Software

CPU AMD EPYC 7702P
Memory DDR4 RDIMM 3200 MHz
SSD (flash) SAMSUNG MZWLJ3T8HBLS-00007
HDD (spinning) TOSHIBA MG07ACA14TE SATA 7200 RPM
Network 100 GbE

XRootD benchmarks used the projects.cern.ch EOS instance (same datacenter).

Library Version

ROOT github tag

Benchmarks github tag

Linux AlmaLinux 9.1 with Linux kernel 6.3 from ELrepo (uring enabled)

https://github.com/jblomer/root/tree/ntuple-chep23
https://github.com/jblomer/iotools/tree/chep23

Expressiveness – Annotated

The RNTuple I/O supports arbitrary combinations of a well-defined set of C++ types

Type Examples EDM Coverage RNTuple Status
PoD bool, int, float

Flat n-tuple

Reduced
AOD

Full AOD /
RECO

Available
Vector<PoD> RVec<float> Available
String std::string Available
Nested vector RVec<RVec<float>> Available
User-defined classes "TEvent" Available
User-defined collections "TCudaVector" Available
stdlib collections std::map, std::tuple Avail. / Testing
Variadic types std::variant, std::unique_ptr Avail. / Testing
Intra-event references "&Electrons[7]" In design

Low-precision
floating points

Float16_t, Double32_t

Optimization benefitting all EDMs
Testing

Custom precision and range In design
Precision cascades In design

The stdlib classes are stored on

disk in a way that is independent

from their platform-specific mem-

ory layout.

RNTuple supports the most

common and performance-

critical stdlib types, such as

std::vector, natively (without

dictionaries).

RNTuple does not support run-

time type discovery when serial-

izing a pointer to a base class.

Expressiveness – Annotated

The RNTuple I/O supports arbitrary combinations of a well-defined set of C++ types

Type Examples EDM Coverage RNTuple Status
PoD bool, int, float

Flat n-tuple

Reduced
AOD

Full AOD /
RECO

Available
Vector<PoD> RVec<float> Available
String std::string Available
Nested vector RVec<RVec<float>> Available
User-defined classes "TEvent" Available
User-defined collections "TCudaVector" Available
stdlib collections std::map, std::tuple Avail. / Testing
Variadic types std::variant, std::unique_ptr Avail. / Testing
Intra-event references "&Electrons[7]" In design

Low-precision
floating points

Float16_t, Double32_t

Optimization benefitting all EDMs
Testing

Custom precision and range In design
Precision cascades In design

The stdlib classes are stored on

disk in a way that is independent

from their platform-specific mem-

ory layout.

RNTuple supports the most

common and performance-

critical stdlib types, such as

std::vector, natively (without

dictionaries).

RNTuple does not support run-

time type discovery when serial-

izing a pointer to a base class.

Expressiveness – Annotated

The RNTuple I/O supports arbitrary combinations of a well-defined set of C++ types

Type Examples EDM Coverage RNTuple Status
PoD bool, int, float

Flat n-tuple

Reduced
AOD

Full AOD /
RECO

Available
Vector<PoD> RVec<float> Available
String std::string Available
Nested vector RVec<RVec<float>> Available
User-defined classes "TEvent" Available
User-defined collections "TCudaVector" Available
stdlib collections std::map, std::tuple Avail. / Testing
Variadic types std::variant, std::unique_ptr Avail. / Testing
Intra-event references "&Electrons[7]" In design

Low-precision
floating points

Float16_t, Double32_t

Optimization benefitting all EDMs
Testing

Custom precision and range In design
Precision cascades In design

The stdlib classes are stored on

disk in a way that is independent

from their platform-specific mem-

ory layout.

RNTuple supports the most

common and performance-

critical stdlib types, such as

std::vector, natively (without

dictionaries).

RNTuple does not support run-

time type discovery when serial-

izing a pointer to a base class.

Expressiveness – Annotated

The RNTuple I/O supports arbitrary combinations of a well-defined set of C++ types

Type Examples EDM Coverage RNTuple Status
PoD bool, int, float

Flat n-tuple

Reduced
AOD

Full AOD /
RECO

Available
Vector<PoD> RVec<float> Available
String std::string Available
Nested vector RVec<RVec<float>> Available
User-defined classes "TEvent" Available
User-defined collections "TCudaVector" Available
stdlib collections std::map, std::tuple Avail. / Testing
Variadic types std::variant, std::unique_ptr Avail. / Testing
Intra-event references "&Electrons[7]" In design

Low-precision
floating points

Float16_t, Double32_t

Optimization benefitting all EDMs
Testing

Custom precision and range In design
Precision cascades In design

The stdlib classes are stored on

disk in a way that is independent

from their platform-specific mem-

ory layout.

RNTuple supports the most

common and performance-

critical stdlib types, such as

std::vector, natively (without

dictionaries).

RNTuple does not support run-

time type discovery when serial-

izing a pointer to a base class.

RNTuple Class Layering

Storage layer / byte ranges
RPageSource, RPageSink, RCluster

Primitives layer / simple types
“Columns” containing elements of fundamental types (float, int, . . .)

grouped into (compressed) pages and clusters
RColumn, RPage

Logical layer / C++ objects
Mapping of C++ types onto columns

e.g. std::vector<float> ↦→ index column and a value column
RField, RNTupleModel, REntry

Event iteration
Reading and writing in event loops

RDataFrame, RNTupleReader, RNTupleView, RNTupleWriter
• Storage access

• File backend: local or remote
using new RRawFile. Remote
file access through Davix and
XRootD

• Object store: stores page groups
directly in objects,
implementation for Intel DAOS,
S3 upcoming

• Virtual: “friend” and “chain”,
buffered writes

• Utility classes: RNTupleImporter,
RNTupleInspector, . . .

RNTuple Class Layering

Storage layer / byte ranges
RPageSource, RPageSink, RCluster

Primitives layer / simple types
“Columns” containing elements of fundamental types (float, int, . . .)

grouped into (compressed) pages and clusters
RColumn, RPage

Logical layer / C++ objects
Mapping of C++ types onto columns

e.g. std::vector<float> ↦→ index column and a value column
RField, RNTupleModel, REntry

Event iteration
Reading and writing in event loops

RDataFrame, RNTupleReader, RNTupleView, RNTupleWriter
• Storage access

• File backend: local or remote
using new RRawFile. Remote
file access through Davix and
XRootD

• Object store: stores page groups
directly in objects,
implementation for Intel DAOS,
S3 upcoming

• Virtual: “friend” and “chain”,
buffered writes

• Utility classes: RNTupleImporter,
RNTupleInspector, . . .

Approximate class translation:

TTree ≈ RNTupleReader
RNTupleWriter

TTreeReader ≈ RNTupleView
TBranch ≈ RField
TBasket ≈ RPage
TTreeCache ≈ RClusterPool

RNTuple Compile-Time Type-Safe API: Write Example

// Unique pointer to a new data schema
auto model = RNTupleModel::Create();
// Shared pointer to an std::vector<float>
auto fieldVpx = model->MakeField<std::vector<float>>("vpx");

auto ntplWriter = RNTupleWriter::Recreate(std::move(model), "Events", "data.root");

for (int i = 0; i < 1000; i++) {
int npx = gRandom->Integer(15);
fieldVpx->clear();
for (int j = 0; j < npx; ++j)

fieldVpx->emplace_back(gRandom->Gaus(0, 1));
ntplWriter->Fill();

}

// Auto-save and close when ntplWriter goes out of scope

RNTuple Type-Erased API for Frameworks: Write Example

// Create a model without an associated default entry
auto model = RNTupleModel::CreateBare();

// Add a field ("branch" in TTree terminology) of type TMuon, where TMuon is assumed to be a class with a dictionary.
// RFieldBase::Create() returns the field or an error. The "Unwrap()" call ensures that an exception is thrown on error.
// Alternatively, frameworks can use the RResult<> return value to implement error handling without exceptions.
model->AddField(Detail::RFieldBase::Create("muons", "TMuon").Unwrap());

// Indicate that the schema is built and entries can now be created from it
model->Freeze();

// Create an entry without constructing the objects that correspond to the fields
auto entry = model->CreateBareEntry();

// Equivalent of TTree's SetBranchAddress
auto myMuon = std::make_unique<TMuon>();
entry->CaptureValueUnsafe("muons", myMuon.get());

{
auto writer = RNTupleWriter::Recreate(std::move(model), "Events", "data.root");
for (...) {

writer->Fill(*entry);
}

}
// Auto-save and close when writer goes out of scope

libRNTupleLite

libCore libROOTIOLite

libROOTNTupleLitelibRIO

libROOTNTuple

C
Sh

im

libROOTFoundation

Depends on LLVM/cling

• The lite libraries are built just like any other
ROOT libraries in ROOT proper (including
modules, dictionaries etc)

• The lite libraries do not use any infrastructure
from libCore but only from
libROOTFoundation

• Contents of the lite libraries:

• RIOLite: RRawFile without support for
plugins, i. e. only local files

• ROOTNTupleLite: RPageSource,
RNTupleDescriptor (read-only)

	Appendix
	Backup Slides

