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Itroductln

e The HC.s.fut»reﬂls one'of a d'ramatjc e
increase in luminosity rather than energy

o Large amount of collision data with complex
events expected in future LHC running

o High-scale physics can lead to observable,
but subtle, kinematic effects in (HL-)LHC data

e We want to make full use of this data by
incorporating and correlating all of the
available information within each event

o Methods that employ machine learning are
widely used in this context

o Alternative: Matrix Element Method (MEM)




Matrlx Element (ME) Method
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Dynamics from QFT— Correlations from physics

Pe(x|ar) =

Pe (x]la) can be used in a number of ways to search for new phenomena at particle colliders

Sample Likelihood Nevman-Pearson Discriminant
(e.g. @ measurements via max. likelihood) (e.g. process search, hypothesis test)
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For the purpose of this talk: P_(xja) is a function that can be computed numerically and
provides physics-driven information useful for measurements, hypothesis tests and searches




Matrix Element Method: Pros and Cons j[
o TheEethod 'ha‘s been USed'formany s ] .
physics results from collider experiments

e The ME Method has several advantages
over machine learning methods
o Does not require training

o Incorporates all of the available final state
kinematic information, including correlations
0.9

o Has a clear physical meaning in terms of
transition probabilities within QFT povte 000IB 00 0IE 0N

e The main limitation of the ME method: computationally intensive
o E.g. calculating P (x|a) for the process:

pp — ttH — WTOW bbb — (v + 6
iInvolves high-dimensional integration and can take minutes per event [2] 4
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https://arxiv.org/abs/1511.05980
https://www.ideals.illinois.edu/items/89280

ME Method in the Machine Learning Era j[
'o The use of de»eplearnmg for fastand susta‘mable Métrlx Element
method calculations was first proposed in [3] (c.f. [4], [3], [6])
MEM Model Development

Simulated events (x) MOdeI Development Models DeepMEM
T ti ti lidati —> models for each
Processes of interest (£, a) ra’n’ng’ Op ’mlza Ion, valiaation process of

interest (§, a
Treat as regression problem: Learn Map: x— P, (xja) & a)

Use in Analysis

Analysis Development
DeepMEM models for signal ‘_&
and background processes

Optimization, systematics, sensitivity, .

Final Pass

Full MEM
calculations



https://hepsoftwarefoundation.org/cwp/hsf-cwp-018-CWP_sustainable_matrix_element_method.pdf
https://arxiv.org/abs/1712.06982
https://arxiv.org/abs/2008.10949
https://arxiv.org/abs/2210.00019

Current ME Method Calculation Pipeline

34 Minutes (200 workers)
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DeepMEM Objectives T

./ dress challenges f the ME Method»whlle retalnlng the beneflts

o Retain the transparency and accuracy of the ME method calculations,
while at the same time dramatically reducing their computational time

e Exploit Deep Neural Networks (DNNs) which are arbitrary function
approximators that scale well with data — DeepMEM Ref [8]

o Replace the calculations performed by ME method frameworks like
MadWeight and MoMEMta with DNNs trained to learn these calculations

(i.e. learn maps such as: x— Pe (x]a) or x— Peq (xja) / P, (xja) )
o Final calculations used in an analysis would be performed using the full

pipeline for publication-quality accuracy — DeepMEM expedites
calculations during research and development, and for quick studies

e Make MEM pipeline open and easy to use (e.g. via
containerization) toward MEMaas [3] & FAIR Al models FAIR4HEP



https://github.com/mihirkatare/DeepMEM
https://github.com/mihirkatare/DeepMEM
https://github.com/mihirkatare/DeepMEM
https://hepsoftwarefoundation.org/cwp/hsf-cwp-018-CWP_sustainable_matrix_element_method.pdf
https://fair4hep.github.io/

MEM Pipeline
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Data and Selection Description T
° s ' provof‘ ofprmdple westu»dl.ed the'S|pIe'DreIIYan process
pp — L+ L+ X

e Parsing the ROOT Trees produced after event selection, we use the
4-momentum of the final state particles and MET

e Mass is a very good discriminant, so we keep the neural network blind to
mass by excluding it (following the approach of [6])

e |nputs: e Outputs:
o p;, i, ¢ of leptons & jets o Log-transformed
o Magnitude, ¢ of MET MoMEMta weight values
o — 14 input parameters for each hypothesis

e Final dataset contains ~300k events


https://arxiv.org/abs/2008.10949

Multlprocessmg Data Loader

° Pyoer»bUIItln vData Loader |'s .deS|gvnedfor'lmage/computer vision
data - loads individual data based on use mappings

o Inefficient for contiguous, tabular data
e No out-of-the-box Data Loader that can address the issues

e Data Managing and Loading Module
o Parse ROOT Trees based on user input
o Use Python Multiprocessing library constructs for data “cache”
o Spawn processes using PyTorch to load data from the cache

o Load next chunk of data and replace “cache” Load times are for 100 epochs of
the MoMEMta test dataset

¢ \We get significantly faster data loading for , IENEETLEIN
our application than built-in Data Loader =B o i

Our Implementation 55s




Network Architecture

l Input: (N, N, = 14)

e \We use a fully-connected Deep Neural

Weight Layer 1: 200 Nodes Network with 5 deep (200 nodes) layers
| e Adam optimizer with learning rate = 0.001
Weight Layer 2: 200 Nodes e We split the data 8:1:1 for training,
| validation, and testing purposes
| e The output is the approximate
- 1 . transformed MoMEMta weights for N ~

Weight Layer 5: 200Nodes | 970 training and validation events
y . ® The network is trained
Weight Layer 6: 1 Node for 100 epochsonan &




Results using DNN

e Testing on unseen data gives a
v T . good by-eye fit between the
DeepMEM predictions and the
MoMEMTta test data

) e Mean Absolute % Error = 1.6%

— = e e However, we see that the

5 neural network does not
generalize well on bins that do
not contain a lot of events




Residual Networks ‘ T

° ReS|duaI» networks (ResNetsv) are neural network archlte»ctures that
iIncorporate skip connections into the network architecture

e Eases training for deep networks by providing shortcuts for
backpropagation, while gaining accuracy from the depth of the
network (see ref [7]) X

e ResNets have empirically shown weight layer
to perform well for aggressively F(x) L relu <
deep networks (ILSVRC’15) [7] weight layer dentity

e Why do ResNets work?
o Address vanishing gradient problem

o Smaller loss values can successfully transmit through a deep
network and be used to update the precursor layers

Image credit
from Ref [7]


https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385

l

[ Weight Layer 1: 200 Nodes 4 We include a skip Weight Layer 1: 200 Nodes
- connection into the original s
DNN A while retaining Depth
[ Weight Layer 2: 200 Nodes i i [ Weight Layer 2: 200 Nodes
- (This Network is less '
: complex than DNN A) !
l i
; I
L We include a skip b ~
[ Weight Layer 5: N, Nodes ] connection into the original Weight Layer 6: N, Nodes ]
DNN A by adding an extra
%}: layer to the depth é?:
[ Weight Layer 6: 1 Node ] (This Network is more [ Weight Layer 7: 1 Node
complex and deeper than
l DNN A)

ResNet A: 5 Deep Layers followed by a
Skip connection

ResNet B: 6 Deep Layers followed by a
Skip connection



Results using Residual Network A T

o \We see better generallzatlon
- o o as compared to the original
DNN with this architecture

e Mean Absolute % Error = 1.4%

100 x~|A: — F
MAPE = — ‘
d n tz:: Ay
_________ fo ‘-.}ai : e We argue that adding a skip

connection improved the
results since ResNet A is less
complex than the original DNN




Results using Residual Network B T

e We see better generallzatlon
o o ~| as compared to the original
DNN and similar to ResNet A
with this architecture

e Mean Absolute % Error = 1.2%

100 | A; — F,
MAPE = — ‘
i n tZ At
L-m.»&wll e A more complex network with a
= skip connection gives us

slightly better results by
leveraging its depth



Generalization in Kinematic Phase Space .
oWe checked the modellng (ResNet B) on dn‘ferent klnematlc
subsets of the test data (No Retraining!)

—}— Test Dataset —}— Test Dataset —}— Test Dataset
W |~ DNNPrediction 4000 w - — DNNPrediction =1 W 0 |CEohNbredcin
3500 +
. . pr(leading lepton) > 30 GeV 00 ' pr(leading lepton) > 40 GeV pr(leading lepton) > 50 GeV
L ) 1000 b
2000 h
T"u‘
Ratio: 0.97 1000 L Ratio: 0.77 00 g l Ratio: 0.28
Threshold = 30GeV ly Threshold = 40GeV lhy Threshold = 50GeV
- il SN remeovitbil} RS il
E 3.0 8.7

oooooooooooooooooooooooooooooo

e Good modellng retained — DeeoMEM modeling of MEM welghts
robust against subsamples defined by leading lepton p_ cut

o Similar good results observed for subsamples through jet p-. cuts



https://github.com/mihirkatare/DeepMEM

e Implemented deep learning methods to approximate ME Method
calculations and demonstrated the viability of this approach

e Implemented a Residual Network for better generalization; showed
the model to be robust against kinematics variations w/o retraining

% Study processes with more complex decays and final state particles
» Explore other ML architectures, include adding physics constraints

% Generate simulated data and models adhering to FAIR principles

and exploit novel tools developed for Al model intepretability
> See CHEP23 talks: FAIR Al Models in HEP, FAIR4UFO Models, Interpretability for DNN Top Taggers

DeepMEM is an open-source python library distributed on PyPI that
available for similar studies: python -m pip install deepmem



https://indico.jlab.org/event/459/contributions/11760/
https://indico.jlab.org/event/459/contributions/11694/
https://indico.jlab.org/event/459/contributions/11737/
https://github.com/mihirkatare/DeepMEM
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