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Introduction
● The LHC’s future is one of a dramatic 

increase in luminosity rather than energy
○ Large amount of collision data with complex 

events expected in future LHC running
○ High-scale physics can lead to observable, 

but subtle, kinematic effects in (HL-)LHC data
● We want to make full use of this data by 

incorporating and correlating all of the 
available information within each event
○ Methods that employ machine learning are 

widely used in this context
○ Alternative: Matrix Element Method (MEM)
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Matrix Element (ME) Method
Ab initio calculation of an approximate probability density function 𝓟𝞷 (𝙭|𝞪) for an event with 
observed final-state particle momenta 𝙭 to be due to a process 𝞷 with theory parameters 𝞪
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Dynamics from QFT→ Correlations from physics

𝓟𝞷 (𝙭|𝞪) can be used in a number of ways to search for new phenomena at particle colliders

Sample Likelihood
(e.g. 𝞪 measurements via max. likelihood)

Neyman-Pearson Discriminant
(e.g. process search, hypothesis test)

For the purpose of this talk: 𝓟𝞷 (𝙭|𝞪) is a function that can be computed numerically and 
provides physics-driven information useful for measurements, hypothesis tests and searches



Matrix Element Method: Pros and Cons
● The ME Method has been used for many 

physics results from collider experiments
● The ME Method has several advantages 

over machine learning methods
○ Does not require training
○ Incorporates all of the available final state 

kinematic information, including correlations
○ Has a clear physical meaning in terms of 

transition probabilities within QFT
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From Ref. [1]

● The main limitation of the ME method: computationally intensive
○ E.g. calculating 𝓟𝞷 (𝙭|𝞪) for the process:                                                          

involves high-dimensional integration and can take minutes per event [2]

https://arxiv.org/abs/1511.05980
https://www.ideals.illinois.edu/items/89280


ME Method in the Machine Learning Era

Analysis Development
DeepMEM models for signal 
and background processes

Final Pass
Full MEM 

calculations

Simulated events (𝙭)

Processes of interest (𝞷, 𝞪)

Optimization, systematics, sensitivity, …

● The use of deep learning for fast and sustainable Matrix Element 
method calculations was first proposed in [3] (c.f. [4], [5], [6])

MEM Model Development
Model Development

Training, optimization, validation
Treat as regression problem: Learn Map: x→ 𝓟𝞷 (𝙭|𝞪)

DeepMEM 
models for each 

process of 
interest (𝞷, 𝞪)

Use in Analysis

Models

https://hepsoftwarefoundation.org/cwp/hsf-cwp-018-CWP_sustainable_matrix_element_method.pdf
https://arxiv.org/abs/1712.06982
https://arxiv.org/abs/2008.10949
https://arxiv.org/abs/2210.00019


Current ME Method Calculation Pipeline

Using the BlueWaters 
Supercomputer @ UIUC



DeepMEM Objectives
● Address challenges of the ME Method while retaining the benefits:

○ Retain the transparency and accuracy of the ME method calculations, 
while at the same time dramatically reducing their computational time

● Exploit Deep Neural Networks (DNNs) which are arbitrary function 
approximators that scale well with data → DeepMEM Ref [8]
○ Replace the calculations performed by ME method frameworks like 

MadWeight and MoMEMta with DNNs trained to learn these calculations 
(i.e. learn maps such as: x→ 𝓟𝞷 (𝙭|𝞪) or x→ 𝓟𝞷1 (𝙭|𝞪) / 𝓟𝞷2 (𝙭|𝞪) )

○ Final calculations used in an analysis would be performed using the full 
pipeline for publication-quality accuracy → DeepMEM expedites 
calculations during research and development, and for quick studies

● Make MEM pipeline open and easy to use (e.g. via 
containerization) toward MEMaaS [3] & FAIR AI models

https://github.com/mihirkatare/DeepMEM
https://github.com/mihirkatare/DeepMEM
https://github.com/mihirkatare/DeepMEM
https://hepsoftwarefoundation.org/cwp/hsf-cwp-018-CWP_sustainable_matrix_element_method.pdf
https://fair4hep.github.io/


MEM Pipeline using DNN Approximations
Using the BlueWaters 
Supercomputer @ UIUC



Data and Selection Description
● As a proof of principle, we studied the simple Drell-Yan process:

● Parsing the ROOT Trees produced after event selection, we use the 
4-momentum of the final state particles and MET

● Mass is a very good discriminant, so we keep the neural network blind to 
mass by excluding it (following the approach of [6])

● Inputs:
○ pT, 𝜂, 𝜙 of leptons & jets
○ Magnitude, 𝜙 of MET
○ → 14 input parameters

● Final dataset contains ~300k events

● Outputs:
○ Log-transformed 

MoMEMta weight values 
for each hypothesis

https://arxiv.org/abs/2008.10949


Multiprocessing Data Loader
● PyTorch built-in Data Loader is designed for image/computer vision 

data - loads individual data based on use mappings
○ Inefficient for contiguous, tabular data

● No out-of-the-box Data Loader that can address the issues
● Data Managing and Loading Module

○ Parse ROOT Trees based on user input
○ Use Python Multiprocessing library constructs for data “cache”
○ Spawn processes using PyTorch to load data from the cache
○ Load next chunk of data and replace “cache”

● We get significantly faster data loading for 
our application than built-in Data Loader 



Network Architecture

● We use a fully-connected Deep Neural 
Network with 5 deep (200 nodes) layers

● Adam optimizer with learning rate = 0.001
● We split the data 8:1:1 for training, 

validation, and testing purposes
● The output is the approximate 

transformed MoMEMta weights for N ~ 
270k training and validation events

● The network is trained 
for 100 epochs on an 
NVIDIA DGX A100



Results using DNN
● Testing on unseen data gives a 

good by-eye fit between the 
DeepMEM predictions and the 
MoMEMta test data

● Mean Absolute % Error = 1.6%

● However, we see that the 
neural network does not 
generalize well on bins that do 
not contain a lot of events



Residual Networks
● Residual networks (ResNets) are neural network architectures that 

incorporate skip connections into the network architecture
● Eases training for deep networks by providing shortcuts for 

backpropagation, while gaining accuracy from the depth of the 
network (see ref [7])

● ResNets have empirically shown 
to perform well for aggressively 
deep networks (ILSVRC’15) [7]

● Why do ResNets work?
○ Address vanishing gradient problem
○ Smaller loss values can successfully transmit through a deep 

network and be used to update the precursor layers

Image credit 
from Ref [7]

https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385


Residual Network Architecture



Results using Residual Network A
● We see better generalization 

as compared to the original 
DNN with this architecture

● Mean Absolute % Error = 1.4%

● We argue that adding a skip 
connection improved the 
results since ResNet A is less 
complex than the original DNN



Results using Residual Network B
● We see better generalization 

as compared to the original 
DNN and similar to ResNet A 
with this architecture

● Mean Absolute % Error = 1.2%

● A more complex network with a 
skip connection gives us 
slightly better results by 
leveraging its depth



Generalization in Kinematic Phase Space
● We checked the modeling (ResNet B) on different kinematic 

subsets of the test data (No Retraining!)

● Good modeling retained → DeepMEM modeling of MEM weights 
robust against subsamples defined by leading lepton pT cut
○ Similar good results observed for subsamples through jet pT cuts

https://github.com/mihirkatare/DeepMEM


● Implemented deep learning methods to approximate ME Method 
calculations and demonstrated the viability of this approach

● Implemented a Residual Network for better generalization; showed 
the model to be robust against kinematics variations w/o retraining

❖ Study processes with more complex decays and final state particles
❖ Explore other ML architectures, include adding physics constraints
❖ Generate simulated data and models adhering to FAIR principles 

and exploit novel tools developed for AI model intepretability
➢ See CHEP23 talks: FAIR AI Models in HEP, FAIR4UFO Models, Interpretability for DNN Top Taggers

DeepMEM is an open-source python library distributed on PyPI that 
available for similar studies: python -m pip install deepmem

Summary

Future Work

https://indico.jlab.org/event/459/contributions/11760/
https://indico.jlab.org/event/459/contributions/11694/
https://indico.jlab.org/event/459/contributions/11737/
https://github.com/mihirkatare/DeepMEM
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