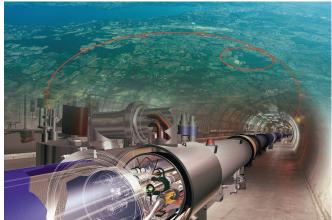
Deep Learning for the Matrix Element Method

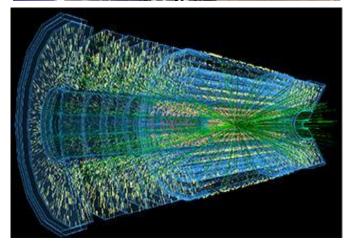
Mark Neubauer University of Illinois at Urbana-Champaign

International Conference on Computing in High Energy & Nuclear Physics (CHEP)

May 9, 2023 in Norfolk, VA USA

- Introduction
- The LHC's future is one of a dramatic increase in luminosity rather than energy
 - Large amount of collision data with complex events expected in future LHC running
 - High-scale physics can lead to observable, but subtle, kinematic effects in (HL-)LHC data
- We want to make full use of this data by incorporating and correlating all of the available information within each event
 - Methods that employ machine learning are widely used in this context
 - Alternative: *Matrix Element Method* (MEM)





Matrix Element (ME) Method

Ab initio calculation of an approximate probability density function $\mathcal{P}_{F}(\mathbf{x}|\mathbf{a})$ for an event with observed final-state particle momenta \mathbf{x} to be due to a process $\boldsymbol{\xi}$ with theory parameters \boldsymbol{a}

$$\mathcal{P}_{\xi}(\mathbf{x}|\boldsymbol{\alpha}) = \frac{1}{\sigma_{\xi}(\boldsymbol{\alpha})} \int d\Phi(\mathbf{y}_{\text{final}}) \, dx_1 \, dx_2 \, \frac{f(x_1)f(x_2)}{2sx_1x_2} \, |\mathcal{M}_{\xi}(\mathbf{y}|\boldsymbol{\alpha})|^2 \, \delta^4(\mathbf{y}_{\text{initial}} - \mathbf{y}_{\text{final}}) \, W(\mathbf{x}, \mathbf{y})$$
Dynamics from QFT \rightarrow Correlations from physics

 $\mathcal{P}_{F}(\boldsymbol{x}|\boldsymbol{a})$ can be used in a number of ways to search for new phenomena at particle colliders Sample Likelihood Neyman-Pearson Discriminant (e.g. *a* measurements via max. likelihood) (e.g. process search, hypothesis test) $p(S|\mathbf{x}) = \frac{\sum_{i} \beta_{S_i} \mathcal{P}_{S_i}(\mathbf{x}|\boldsymbol{\alpha}_{S_i})}{\sum_{i} \beta_{S_i} \mathcal{P}(\mathbf{x}|\boldsymbol{\alpha}_{S_i}) + \sum_{j} \beta_{B_j} \mathcal{P}(\mathbf{x}|\boldsymbol{\alpha}_{B_j})}$

$$\mathcal{L}(\boldsymbol{\alpha}) = \prod_{i} \sum_{k} f_k \mathcal{P}_{\xi_k}(\mathbf{x}_i | \boldsymbol{\alpha})$$

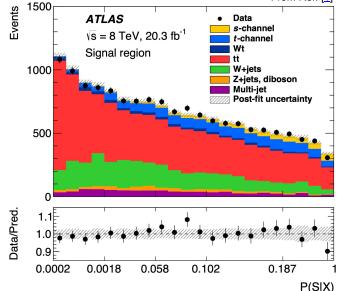
<u>For the purpose of this talk</u>: $\mathcal{P}_{\mathcal{F}}(\mathbf{x}|\mathbf{a})$ is a function that can be computed numerically and provides physics-driven information useful for measurements, hypothesis tests and searches

Matrix Element Method: Pros and Cons

- The ME Method has been used for many physics results from collider experiments
- The ME Method has several advantages over machine learning methods
 - Does not require training
 - Incorporates all of the available final state kinematic information, including correlations
 - Has a clear physical meaning in terms of transition probabilities within QFT
- The main limitation of the ME method: *computationally intensive*
 - E.g. calculating $\mathcal{P}_{\epsilon}(\mathbf{x}|\mathbf{a})$ for the process:

 $pp \to t\bar{t}H \to W^+bW^-bbb \to \ell\nu + 6j$

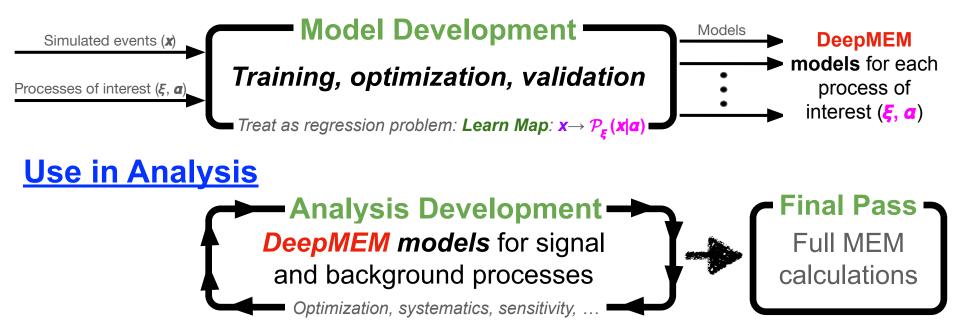
involves high-dimensional integration and can take minutes per event [2]



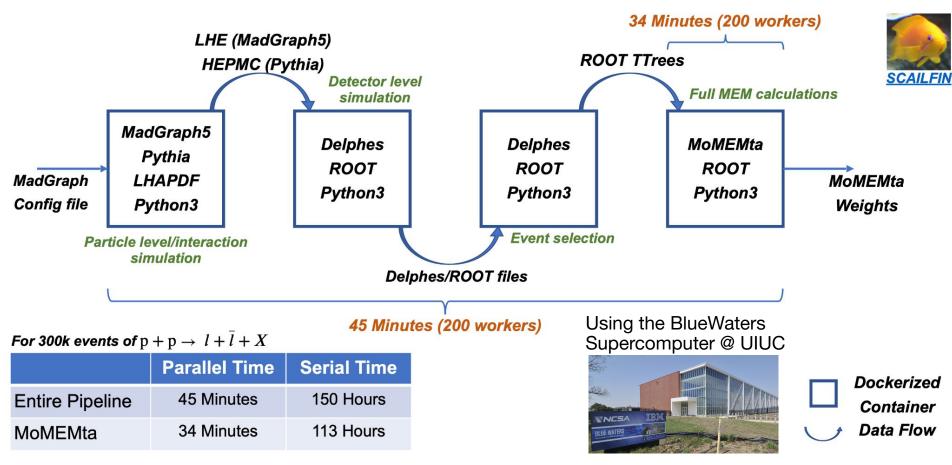
ME Method in the Machine Learning Era

- The use of deep learning for fast and sustainable Matrix Element method calculations was first proposed in [<u>3</u>] (c.f. [<u>4</u>], [<u>5</u>], [<u>6</u>])

MEM Model Development



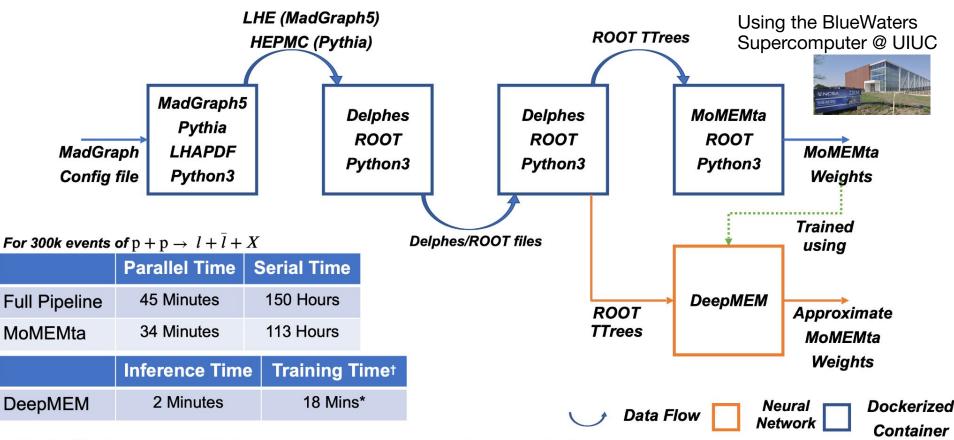
Current ME Method Calculation Pipeline



DeepMEM Objectives

- Address challenges of the ME Method while retaining the benefits:
 - Retain the transparency and accuracy of the ME method calculations, while at the same time dramatically reducing their computational time
- Exploit *Deep Neural Networks (DNNs)* which are arbitrary function approximators that scale well with data → <u>DeepMEM</u> Ref [8]
 - Replace the calculations performed by ME method frameworks like MadWeight and MoMEMta with DNNs trained to learn these calculations (i.e. *learn maps such as:* $x \rightarrow P_{E}(x|a)$ or $x \rightarrow P_{E1}(x|a) I P_{E2}(x|a)$)
 - Final calculations used in an analysis would be performed using the full pipeline for publication-quality accuracy → <u>DeepMEM</u> expedites calculations during research and development, and for quick studies
- Make MEM pipeline open and easy to use (e.g. via containerization) toward MEMaaS [3] & FAIR AI models

MEM Pipeline using DNN Approximations



* Trained for 100 epochs *†* Training needs to be done only once for a particular final state

Data and Selection Description

- As a proof of principle, we studied the simple Drell-Yan process:

$pp \to \ell + \ell + X$

- Parsing the ROOT Trees produced after event selection, we use the 4-momentum of the final state particles and MET
- Mass is a very good discriminant, so we keep the neural network blind to mass by excluding it (following the approach of [6])
 - Inputs:

 ρ_{T} , η, φ of leptons & jets
Magnitude, φ of MET
→ 14 input parameters

- <u>Outputs</u>:
 - Log-transformed MoMEMta weight values for each hypothesis

Final dataset contains ~300k events

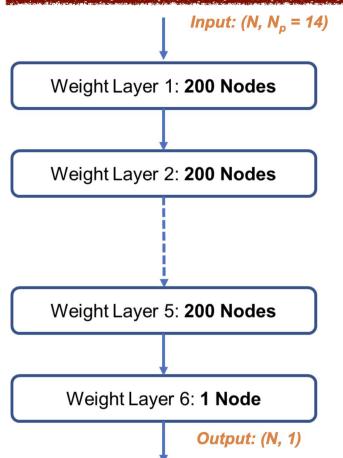
Multiprocessing Data Loader

- PyTorch built-in Data Loader is designed for image/computer vision data - loads individual data based on use mappings
 Inefficient for contiguous, tabular data
- No out-of-the-box Data Loader that can address the issues
- Data Managing and Loading Module
 Parse ROOT Trees based on user input
 - Use Python Multiprocessing library constructs for data "cache"
 - \circ Spawn processes using PyTorch to load data from the cache
 - Load next chunk of data and replace "cache"
- We get significantly faster data loading for our application than built-in Data Loader

Load times are for 100 epochs of the MoMEMta test dataset

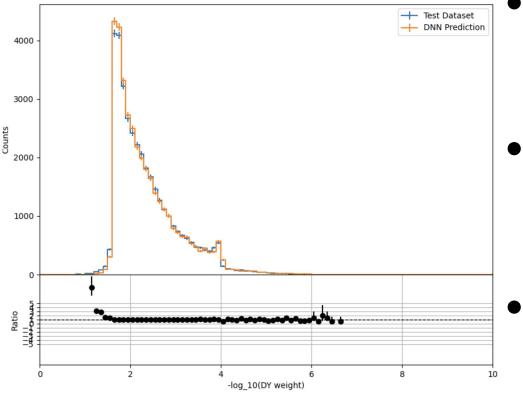
		Load Time
	In-Built	506 s
	Our Implementation	55 s

Network Architecture



- We use a fully-connected Deep Neural Network with 5 deep (200 nodes) layers
- Adam optimizer with learning rate = 0.001
- We split the data 8:1:1 for training, validation, and testing purposes
- The output is the approximate transformed MoMEMta weights for N ~ 270k training and validation events
- The network is trained for 100 epochs on an NVIDIA DGX A100

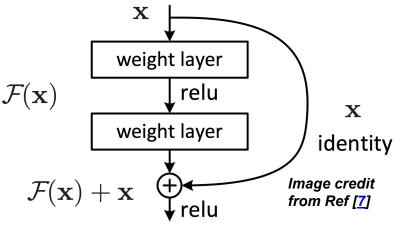
Results using DNN



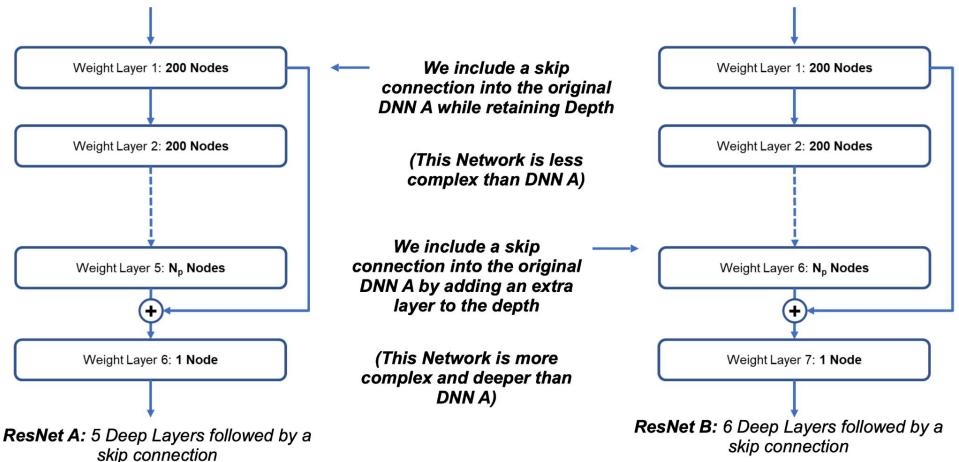
- Testing on unseen data gives a good by-eye fit between the DeepMEM predictions and the MoMEMta test data
- Mean Absolute % Error = 1.6% MAPE = $\frac{100}{n} \sum_{t=1}^{n} \left| \frac{A_t - F_t}{A_t} \right|$
- However, we see that the neural network does not generalize well on bins that do not contain a lot of events

Residual Networks

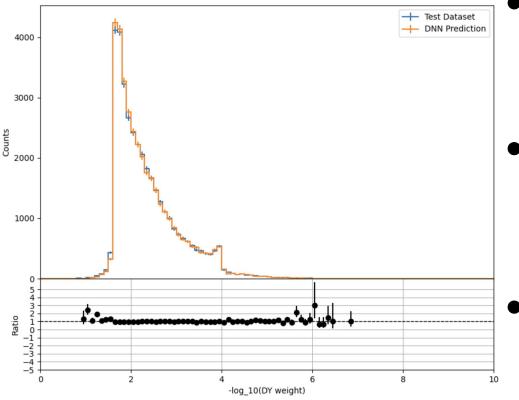
- Residual networks (ResNets) are neural network architectures that incorporate skip connections into the network architecture
- Eases training for deep networks by providing shortcuts for backpropagation, while gaining accuracy from the depth of the network (see ref [7])
- ResNets have empirically shown to perform well for aggressively deep networks (ILSVRC'15) [7]
- Why do ResNets work?
 - \circ Address vanishing gradient problem
 - Smaller loss values can successfully transmit through a deep network and be used to update the precursor layers



Residual Network Architecture

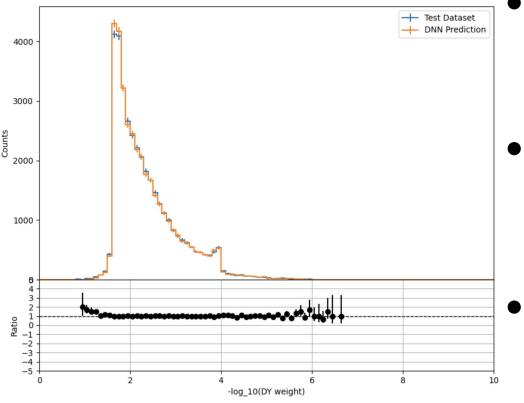


Results using Residual Network A



- We see better generalization as compared to the original DNN with this architecture
- Mean Absolute % Error = 1.4% MAPE = $\frac{100}{n} \sum_{t=1}^{n} \left| \frac{A_t - F_t}{A_t} \right|$
- We argue that adding a skip connection improved the results since ResNet A is less complex than the original DNN

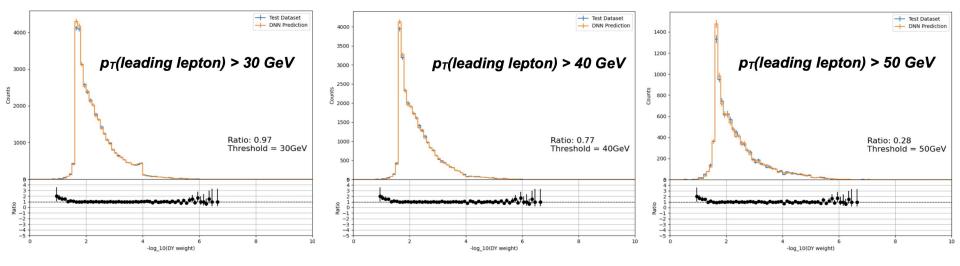
Results using Residual Network B



- We see better generalization as compared to the original DNN and similar to ResNet A with this architecture
- Mean Absolute % Error = 1.2% MAPE = $\frac{100}{n} \sum_{t=1}^{n} \left| \frac{A_t - F_t}{A_t} \right|$
- A more complex network with a skip connection gives us slightly better results by leveraging its depth

Generalization in Kinematic Phase Space

• We checked the modeling (ResNet B) on different kinematic subsets of the test data (No Retraining!)



 Good modeling retained → <u>DeepMEM</u> modeling of MEM weights robust against subsamples defined by leading lepton p_T cut
 Similar good results observed for subsamples through jet p_T cuts

- Implemented deep learning methods to approximate ME Method calculations and demonstrated the viability of this approach
- Implemented a Residual Network for better generalization; showed the model to be robust against kinematics variations w/o retraining

- Study processes with more complex decays and final state particles
- Explore other ML architectures, include adding physics constraints

Filme Work

- Generate simulated data and models adhering to FAIR principles and exploit novel tools developed for AI model intepretability
 - See CHEP23 talks: <u>FAIR AI Models in HEP</u>, <u>FAIR4UFO Models</u>, <u>Interpretability for DNN Top</u> <u>Taggers</u>

DeepMEM is an open-source python library distributed on PyPI that available for similar studies: python -m pip install deepmem

Acknowledgements

- The key ideas were developed through discussions w/ Philip Chang
 This work was performed by Mihir Katare and Matthew Feickert, with guidance from Avik Roy

Philip Chang

Mihir Katare

Matthew Feickert

Avik Roy

 This work was supported through grants from the National Science Foundation under IRIS-HEP (<u>OAC-1836650</u>) and SCAILFIN (<u>OAC-1841456</u>)

References

[1] ATLAS Collaboration, "Evidence for single top quark production in the s-channel in pp collisions at $\sqrt{8}$ TeV with ATLAS using the Matrix Element Method", *PLB* 756, 228 (2016)

[2] A. Bayse, "A search for the *ttH* ($H \rightarrow bb$) channel at the LHC with the ATLAS detector using a matrix element method", Ph.D. Thesis, UIUC (2015)

[3] P. Chang, S. Gleyzer, M. Neubauer, D. Zhong, "Sustainable Matrix Element through Deep Learning", HSF-CWP-018, 10.5281/zenodo.4008241 (2017)

[4] Albrecht, J. *et al.* (The HEP Software Foundation), "A Roadmap for HEP Software and Computing R&D for the 2020s", *Comput. Softw. Big. Sci.* (2019) 3, 7

[5] F. Bury, C. Delaere, "Matrix Element Regression – Breaking the CPU Barrier", *JHEP* 20 (2021)

[6] A. Butter, T. Heimel, T. Martini, S. Peitzsch, T. Plehn, "Two Invertible Networks for the Matrix Element Method" (2022)

[7] K. He, X. Zhang, S. Ren, J. Sun, "Deep Residual Learning for Image Recognition", ILSVRC 2015, arXiv:1512.03385 [cs.CV] (2015)

[8] DeepMEM Github repository

[9] M. Katare, M. Neubauer, M. Feickert, A. Roy, "Deep Learning for the Matrix Element Method", *Proceedings of Science* ICHEP2022, 246 (2022)