
Deep Learning for the
Matrix Element Method

Mark Neubauer
University of Illinois at Urbana-Champaign

International Conference on Computing in
High Energy & Nuclear Physics (CHEP)

May 9, 2023 in Norfolk, VA USA
SCAILFIN

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1841456

Introduction
● The LHC’s future is one of a dramatic

increase in luminosity rather than energy
○ Large amount of collision data with complex

events expected in future LHC running
○ High-scale physics can lead to observable,

but subtle, kinematic effects in (HL-)LHC data
● We want to make full use of this data by

incorporating and correlating all of the
available information within each event
○ Methods that employ machine learning are

widely used in this context
○ Alternative: Matrix Element Method (MEM)

2

Matrix Element (ME) Method
Ab initio calculation of an approximate probability density function 𝓟𝞷 (𝙭|𝞪) for an event with
observed final-state particle momenta 𝙭 to be due to a process 𝞷 with theory parameters 𝞪

3

}
Dynamics from QFT→ Correlations from physics

𝓟𝞷 (𝙭|𝞪) can be used in a number of ways to search for new phenomena at particle colliders

Sample Likelihood
(e.g. 𝞪 measurements via max. likelihood)

Neyman-Pearson Discriminant
(e.g. process search, hypothesis test)

For the purpose of this talk: 𝓟𝞷 (𝙭|𝞪) is a function that can be computed numerically and
provides physics-driven information useful for measurements, hypothesis tests and searches

Matrix Element Method: Pros and Cons
● The ME Method has been used for many

physics results from collider experiments
● The ME Method has several advantages

over machine learning methods
○ Does not require training
○ Incorporates all of the available final state

kinematic information, including correlations
○ Has a clear physical meaning in terms of

transition probabilities within QFT

4

From Ref. [1]

● The main limitation of the ME method: computationally intensive
○ E.g. calculating 𝓟𝞷 (𝙭|𝞪) for the process:

involves high-dimensional integration and can take minutes per event [2]

https://arxiv.org/abs/1511.05980
https://www.ideals.illinois.edu/items/89280

ME Method in the Machine Learning Era

Analysis Development
DeepMEM models for signal
and background processes

Final Pass
Full MEM

calculations

Simulated events (𝙭)

Processes of interest (𝞷, 𝞪)

Optimization, systematics, sensitivity, …

● The use of deep learning for fast and sustainable Matrix Element
method calculations was first proposed in [3] (c.f. [4], [5], [6])

MEM Model Development
Model Development

Training, optimization, validation
Treat as regression problem: Learn Map: x→ 𝓟𝞷 (𝙭|𝞪)

DeepMEM
models for each

process of
interest (𝞷, 𝞪)

Use in Analysis

Models

https://hepsoftwarefoundation.org/cwp/hsf-cwp-018-CWP_sustainable_matrix_element_method.pdf
https://arxiv.org/abs/1712.06982
https://arxiv.org/abs/2008.10949
https://arxiv.org/abs/2210.00019

Current ME Method Calculation Pipeline

Using the BlueWaters
Supercomputer @ UIUC

DeepMEM Objectives
● Address challenges of the ME Method while retaining the benefits:

○ Retain the transparency and accuracy of the ME method calculations,
while at the same time dramatically reducing their computational time

● Exploit Deep Neural Networks (DNNs) which are arbitrary function
approximators that scale well with data → DeepMEM Ref [8]
○ Replace the calculations performed by ME method frameworks like

MadWeight and MoMEMta with DNNs trained to learn these calculations
(i.e. learn maps such as: x→ 𝓟𝞷 (𝙭|𝞪) or x→ 𝓟𝞷1 (𝙭|𝞪) / 𝓟𝞷2 (𝙭|𝞪))

○ Final calculations used in an analysis would be performed using the full
pipeline for publication-quality accuracy → DeepMEM expedites
calculations during research and development, and for quick studies

● Make MEM pipeline open and easy to use (e.g. via
containerization) toward MEMaaS [3] & FAIR AI models

https://github.com/mihirkatare/DeepMEM
https://github.com/mihirkatare/DeepMEM
https://github.com/mihirkatare/DeepMEM
https://hepsoftwarefoundation.org/cwp/hsf-cwp-018-CWP_sustainable_matrix_element_method.pdf
https://fair4hep.github.io/

MEM Pipeline using DNN Approximations
Using the BlueWaters
Supercomputer @ UIUC

Data and Selection Description
● As a proof of principle, we studied the simple Drell-Yan process:

● Parsing the ROOT Trees produced after event selection, we use the
4-momentum of the final state particles and MET

● Mass is a very good discriminant, so we keep the neural network blind to
mass by excluding it (following the approach of [6])

● Inputs:
○ pT, 𝜂, 𝜙 of leptons & jets
○ Magnitude, 𝜙 of MET
○ → 14 input parameters

● Final dataset contains ~300k events

● Outputs:
○ Log-transformed

MoMEMta weight values
for each hypothesis

https://arxiv.org/abs/2008.10949

Multiprocessing Data Loader
● PyTorch built-in Data Loader is designed for image/computer vision

data - loads individual data based on use mappings
○ Inefficient for contiguous, tabular data

● No out-of-the-box Data Loader that can address the issues
● Data Managing and Loading Module

○ Parse ROOT Trees based on user input
○ Use Python Multiprocessing library constructs for data “cache”
○ Spawn processes using PyTorch to load data from the cache
○ Load next chunk of data and replace “cache”

● We get significantly faster data loading for
our application than built-in Data Loader

Network Architecture

● We use a fully-connected Deep Neural
Network with 5 deep (200 nodes) layers

● Adam optimizer with learning rate = 0.001
● We split the data 8:1:1 for training,

validation, and testing purposes
● The output is the approximate

transformed MoMEMta weights for N ~
270k training and validation events

● The network is trained
for 100 epochs on an
NVIDIA DGX A100

Results using DNN
● Testing on unseen data gives a

good by-eye fit between the
DeepMEM predictions and the
MoMEMta test data

● Mean Absolute % Error = 1.6%

● However, we see that the
neural network does not
generalize well on bins that do
not contain a lot of events

Residual Networks
● Residual networks (ResNets) are neural network architectures that

incorporate skip connections into the network architecture
● Eases training for deep networks by providing shortcuts for

backpropagation, while gaining accuracy from the depth of the
network (see ref [7])

● ResNets have empirically shown
to perform well for aggressively
deep networks (ILSVRC’15) [7]

● Why do ResNets work?
○ Address vanishing gradient problem
○ Smaller loss values can successfully transmit through a deep

network and be used to update the precursor layers

Image credit
from Ref [7]

https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385

Residual Network Architecture

Results using Residual Network A
● We see better generalization

as compared to the original
DNN with this architecture

● Mean Absolute % Error = 1.4%

● We argue that adding a skip
connection improved the
results since ResNet A is less
complex than the original DNN

Results using Residual Network B
● We see better generalization

as compared to the original
DNN and similar to ResNet A
with this architecture

● Mean Absolute % Error = 1.2%

● A more complex network with a
skip connection gives us
slightly better results by
leveraging its depth

Generalization in Kinematic Phase Space
● We checked the modeling (ResNet B) on different kinematic

subsets of the test data (No Retraining!)

● Good modeling retained → DeepMEM modeling of MEM weights
robust against subsamples defined by leading lepton pT cut
○ Similar good results observed for subsamples through jet pT cuts

https://github.com/mihirkatare/DeepMEM

● Implemented deep learning methods to approximate ME Method
calculations and demonstrated the viability of this approach

● Implemented a Residual Network for better generalization; showed
the model to be robust against kinematics variations w/o retraining

❖ Study processes with more complex decays and final state particles
❖ Explore other ML architectures, include adding physics constraints
❖ Generate simulated data and models adhering to FAIR principles

and exploit novel tools developed for AI model intepretability
➢ See CHEP23 talks: FAIR AI Models in HEP, FAIR4UFO Models, Interpretability for DNN Top Taggers

DeepMEM is an open-source python library distributed on PyPI that
available for similar studies: python -m pip install deepmem

Summary

Future Work

https://indico.jlab.org/event/459/contributions/11760/
https://indico.jlab.org/event/459/contributions/11694/
https://indico.jlab.org/event/459/contributions/11737/
https://github.com/mihirkatare/DeepMEM

Acknowledgements
● The key ideas were developed through discussions w/ Philip Chang
● This work was performed by Mihir Katare and Matthew Feickert,

with guidance from Avik Roy

● This work was supported through grants from the
National Science Foundation under IRIS-HEP
(OAC-1836650) and SCAILFIN (OAC-1841456)

Mihir Katare Matthew Feickert Avik RoyPhilip Chang

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1836650
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1841456
https://scailfin.github.io/
https://www.nsf.gov/
https://iris-hep.org/

References
[1] ATLAS Collaboration, “Evidence for single top quark production in the s-channel in pp
collisions at √8 TeV with ATLAS using the Matrix Element Method”, PLB 756, 228 (2016)
[2] A. Bayse, “A search for the ttH (H→bb) channel at the LHC with the ATLAS detector using
a matrix element method”, Ph.D. Thesis, UIUC (2015)
[3] P. Chang, S. Gleyzer, M. Neubauer, D. Zhong, “Sustainable Matrix Element through Deep
Learning”, HSF-CWP-018, 10.5281/zenodo.4008241 (2017)
[4] Albrecht, J. et al. (The HEP Software Foundation), “A Roadmap for HEP Software and
Computing R&D for the 2020s”, Comput. Softw. Big. Sci. (2019) 3, 7
[5] F. Bury, C. Delaere, “Matrix Element Regression – Breaking the CPU Barrier”, JHEP 20
(2021)
[6] A. Butter, T. Heimel, T. Martini, S. Peitzsch, T. Plehn, “Two Invertible Networks for the
Matrix Element Method” (2022)
[7] K. He, X. Zhang, S. Ren, J. Sun, “Deep Residual Learning for Image Recognition”,
ILSVRC 2015, arXiv:1512.03385 [cs.CV] (2015)
[8] DeepMEM Github repository
[9] M. Katare, M. Neubauer, M. Feickert, A. Roy, “Deep Learning for the Matrix Element
Method”, Proceedings of Science ICHEP2022, 246 (2022)

https://arxiv.org/abs/1511.05980
https://www.ideals.illinois.edu/items/89280
https://hepsoftwarefoundation.org/cwp/hsf-cwp-018-CWP_sustainable_matrix_element_method.pdf
https://arxiv.org/abs/1712.06982
https://arxiv.org/abs/2008.10949
https://arxiv.org/abs/2210.00019
https://arxiv.org/search/hep-ph?searchtype=author&query=Butter%2C+A
https://arxiv.org/search/hep-ph?searchtype=author&query=Heimel%2C+T
https://arxiv.org/search/hep-ph?searchtype=author&query=Martini%2C+T
https://arxiv.org/search/hep-ph?searchtype=author&query=Peitzsch%2C+S
https://arxiv.org/abs/1512.03385?context=cs
https://arxiv.org/search/cs?searchtype=author&query=He%2C+K
https://arxiv.org/search/cs?searchtype=author&query=Zhang%2C+X
https://arxiv.org/search/cs?searchtype=author&query=Ren%2C+S
https://arxiv.org/search/cs?searchtype=author&query=Sun%2C+J
https://arxiv.org/abs/1512.03385
https://github.com/mihirkatare/DeepMEM
https://arxiv.org/pdf/2211.11910.pdf

