





# Medusa

#### Multithread 4-body decay fitting and simulation software

#### Alessandro Maria Ricci<sup>1</sup>,

#### A. A. Alves Junior<sup>2</sup>, D. Brundu<sup>3</sup>, A. Contu<sup>3</sup>, F. Dordei<sup>3</sup>, P. Muzzetto<sup>3</sup>

<sup>1</sup>University of Pisa and INFN Section of Pisa,

<sup>2</sup> Institute for Astroparticle Physics – Karlsruhe Institute of Technology (IAP/KIT),

<sup>3</sup> INFN Section of Cagliari

CHEP 2023, Norfolk, Virginia (USA), 8-12 May 2023

Contact: <a>alessandro.ricci@df.unipi.it</a>

# Content

- The scientific case
- Medusa
- Use case:  $B^0_s(\overline{B}^0_s) \to J/\psi \phi \to \mu^+\mu^-K^+K^-$  decay at LHCb
  - Signal-only model
    - Amplitudes and angular distributions
    - Coefficients in the time functions
  - Flavour tagging
  - Experimental artifacts and simultaneous fit
  - Probability Density Function (PDF)
- Validation
- Performance
- Conclusions and distribution

# The scientific case

- Among the biggest computational challenges for High Energy Physics (HEP) experiments, there are the increasingly larger datasets that are being collected, which often require correspondingly complex data analyses.
- In particular, the PDFs used for data modelling become more and more complicated, with hundred of free parameters.
- The optimization of such models involves a significant computational effort and a considerable amount of time, of the order of days, before reaching a result.
- The current strategy to increase overall performance is to parallelize the software in order to benefit from the large performance gains that can be achieved with multithreading in CPU and/or GPU.
- Despite ongoing modernization efforts, a large fraction of the software used in HEP is inherited. It consists of libraries of single threaded, mono-platform routines.



Medusa



- Medusa is a C++ 14 compliant application to perform physics data analyses of generic 4-body decays in massively parallel platforms on Linux systems.
- Medusa is highly based on Hydra v3.0 (<u>link</u>), a C++ 14 compliant and header only library that hides most of complexities of writing parallel code for different architectures.
- Hydra provides a collection of containers and algorithms commonly used in HEP data analysis, which can transparently exploit enabled devices for OpenMP, CUDA, and TBB, allowing the user to re-use the same code across a large range of available multi-core CPU and GPU.
- Medusa wants to be a set of ready-made models to perform data analysis, as the CP-violating phase model in  $B_s^0(\bar{B}_s^0)$  decay, and ready-made multithread functions, as the Fadeeva functions, to accelerate the develop of new models.

# Use case: $B_s^0(\overline{B}_s^0)$ decay at LHCb

- Medusa has been tested through the measurement of the CP-violating phase  $\phi_s$  in  $B_s^0(\bar{B}_s^0) \rightarrow J/\psi \phi \rightarrow \mu^+\mu^-K^+K^-$  decay, one of the golden channels for this type of research at LHCb.
- Between 2015 and 2016, LHCb Collaboration collected a sample of about 209000 events.
- For extracting the phase  $\phi_s$  is necessary to perform a maximum-likelihood fit with 32 free parameters, by using a model which includes both the signal and the background.
- This model must include the modeling of the distribution of the  $B_s^0$ -decay times, of the decay angles, of the so-called flavour tagging to distinguish between  $B_s^0$  and  $\overline{B}_s^0$  mesons and other experimental artifacts.



#### Signal-only model

The full time- and angle-dependent decay rate is (<u>Eur. Phys. J. C (2019) 79, 106</u>, <u>Eur. Phys. J. C (2020) 80</u>, 601 and <u>Stemmle, Ph.D. Thesis, Heidelberg, Germany, 2019</u>):

$$\frac{d^4\Gamma}{dt\,d\theta_\mu\,d\theta_K\,d\phi} \propto \sum_{k=1}^{10} A_k h_{k,q}(t) f_k(\theta_\mu,\theta_K,\phi) \qquad \text{Signal-only model}$$

$$h_{k,1}(t) = \frac{3}{4\pi} e^{-\Gamma t} \left( a_k \cosh \frac{\Delta \Gamma t}{2} + b_k \sinh \frac{\Delta \Gamma t}{2} + c_k \cos(\Delta m t) + d_k \sin(\Delta m t) \right) \text{ for } B_s^0$$

$$h_{k,-1}(t) = \frac{3}{4\pi} e^{-\Gamma t} \left( a_k \cosh \frac{\Delta \Gamma t}{2} + b_k \sinh \frac{\Delta \Gamma t}{2} - c_k \cos(\Delta m t) - d_k \sin(\Delta m t) \right) \text{ for } \bar{B}_s^0$$

• Free parameters:  $\Gamma = \frac{\Gamma_H + \Gamma_L}{2}$ ,  $\Delta \Gamma = \Gamma_L - \Gamma_H$ ,  $\Delta m = M_H - M_L$ .

#### Coefficients in the time functions

- Coefficients in the time functions  $h_{k,1}(t)$  and  $h_{k,-1}(t)$  with the polarization dependent CP violation.
- Free parameters:  $\lambda_0, \frac{\lambda_{\parallel}}{\lambda_0}, \frac{\lambda_{\perp}}{\lambda_0}, \frac{\lambda_S}{\lambda_0}, \phi_0, (\phi_{\parallel} \phi_0), (\phi_{\perp} \phi_0), (\phi_S \phi_0), \delta_0, (\delta_{\parallel} \delta_0), (\delta_{\perp} \delta_0), (\delta_S \delta_{\perp}).$

| k  | $a_k$                                                                                                          | $b_k$                                                                                           | $c_k$                                                                                                  | $d_k$                                                                                            |
|----|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| 1  | $\frac{1}{2}(1+ \lambda_0 ^2)$                                                                                 | $- \lambda_0 \cos(\phi_0)$                                                                      | $\frac{1}{2}(1- \lambda_0 ^2)$                                                                         | $ \lambda_0 \sin(\phi_0)$                                                                        |
| 2  | $\frac{1}{2}(1+ \lambda_{  } ^2)$                                                                              | $- \lambda_{  } \cos(\phi_{  })$                                                                | $\frac{1}{2}(1- \lambda_{  } ^2)$                                                                      | $ \lambda_{  } \sin(\phi_{  })$                                                                  |
| 3  | $\frac{1}{2}(1+ \lambda_{\perp} ^2)$                                                                           | $ \lambda_{\perp} \cos(\phi_{\perp})$                                                           | $\frac{1}{2}(1- \lambda_{\perp} ^2)$                                                                   | $- \lambda_{\perp} \sin(\phi_{\perp})$                                                           |
| 4  | $\frac{1}{2} \left[ \sin(\delta_{\perp} - \delta_{\parallel}) -  \lambda_{\perp} \lambda_{\parallel}  \right]$ | $\frac{1}{2} \bigg[  \lambda_{\perp}  \sin(\delta_{\perp} - \delta_{  } - \phi_{\perp}) \bigg]$ | $\frac{1}{2} \bigg[ \sin(\delta_{\perp} - \delta_{\parallel}) +  \lambda_{\perp} \lambda_{\parallel} $ | $-\frac{1}{2} \bigg[  \lambda_{\perp}  \cos(\delta_{\perp} - \delta_{  } - \phi_{\perp}) \bigg]$ |
|    | $\sin(\delta_{\perp} - \delta_{  } - \phi_{\perp} + \phi_{  })$                                                | $+ \lambda_{  } \sin(\delta_{  }-\delta_{\perp}-\phi_{  })$                                     | $\sin(\delta_{\perp} - \delta_{  } - \phi_{\perp} + \phi_{  })$                                        | $+ \lambda_{  } \cos(\delta_{  }-\delta_{\perp}-\phi_{  })$                                      |
| 5  | $\frac{1}{2} \left[ \cos(\delta_0 - \delta_{  }) +  \lambda_0 \lambda_{  } \right]$                            | $-\frac{1}{2}\left[\left \lambda_{0}\right \cos(\delta_{0}-\delta_{  }-\phi_{0})\right]$        | $\frac{1}{2} \left[ \cos(\delta_0 - \delta_{  }) -  \lambda_0 \lambda_{  }  \right]$                   | $-\frac{1}{2}\left[ \lambda_0 \sin(\delta_0-\delta_{  }-\phi_0)\right]$                          |
|    | $\cos(\delta_0-\delta_{  }-\phi_0+\phi_{  })$                                                                  | $+ \lambda_{  } \cos(\delta_{  }-\delta_0-\phi_{  }) \Big]$                                     | $\cos(\delta_0-\delta_{  }-\phi_0+\phi_{  })$                                                          | $+ \lambda_{  } \sin(\delta_{  }-\delta_0-\phi_{  })$                                            |
| 6  | $-\frac{1}{2}\left[\sin(\delta_0-\delta_{\perp})- \lambda_0\lambda_{\perp} \right]$                            | $\frac{1}{2} \left[  \lambda_0  \sin(\delta_0 - \delta_\perp - \phi_0) \right]$                 | $-\frac{1}{2}\left[\sin(\delta_0-\delta_{\perp})+ \lambda_0\lambda_{\perp} \right]$                    | $-\frac{1}{2}\left[ \lambda_0 \cos(\delta_0-\delta_\perp-\phi_0)\right]$                         |
|    | $\sin(\delta_0 - \delta_\perp - \phi_0 + \phi_\perp)$                                                          | $+ \lambda_{\perp} \sin(\delta_{\perp}-\delta_{0}-\phi_{\perp})\Big]$                           | $\sin(\delta_0 - \delta_\perp - \phi_0 + \phi_\perp)$                                                  | $+ \lambda_{\perp} \cos(\delta_{\perp}-\delta_{0}-\phi_{\perp}) $                                |
| 7  | $\frac{1}{2}(1+ \lambda_{\rm S} ^2)$                                                                           | $ \lambda_{ m S} \cos(\phi_{ m S})$                                                             | $\frac{1}{2}(1- \lambda_{\rm S} ^2)$                                                                   | $- \lambda_{ m S} \sin(\phi_{ m S})$                                                             |
| 8  | $\frac{1}{2} \left[ \cos(\delta_S - \delta_{  }) -  \lambda_S \lambda_{  }  \right]$                           | $\frac{1}{2} \bigg[  \lambda_S  \cos(\delta_S - \delta_{  } - \phi_S) \bigg]$                   | $\frac{1}{2} \bigg[ \cos(\delta_S - \delta_{  }) +  \lambda_S \lambda_{  }  \bigg]$                    | $\frac{1}{2} \bigg[  \lambda_S  \sin(\delta_S - \delta_{  } - \phi_S) \bigg]$                    |
|    | $\cos(\delta_S - \delta_{  } - \phi_S + \phi_{  })$                                                            | $- \lambda_{  } \cos(\delta_{  }-\delta_S-\phi_{  })$                                           | $\cos(\delta_S - \delta_{  } - \phi_S + \phi_{  })$                                                    | $- \lambda_{  } \sin(\delta_{  }-\delta_S-\phi_{  })$                                            |
| 9  | $-\frac{1}{2}\left[\sin(\delta_S-\delta_{\perp})+ \lambda_S\lambda_{\perp} \right]$                            | $-\frac{1}{2}\left[ \lambda_S \sin(\delta_S-\delta_{\perp}-\phi_S)\right]$                      | $-\frac{1}{2}\left[\sin(\delta_S-\delta_{\perp})- \lambda_S\lambda_{\perp} \right]$                    | $-\frac{1}{2}\left[- \lambda_S \cos(\delta_S-\delta_{\perp}-\phi_S)\right]$                      |
|    | $\sin(\delta_S - \delta_\perp - \phi_S + \phi_\perp)$                                                          | $- \lambda_{\perp} \sin(\delta_{\perp}-\delta_{S}-\phi_{\perp}) $                               | $\sin(\delta_S - \delta_\perp - \phi_S + \phi_\perp)$                                                  | $+ \lambda_{\perp} \cos(\delta_{\perp}-\delta_{S}-\phi_{\perp}) $                                |
| 10 | $\frac{1}{2} \bigg[ \cos(\delta_S - \delta_0) -  \lambda_S \lambda_0  \bigg]$                                  | $\frac{1}{2} \left[  \lambda_S  \cos(\delta_S - \delta_0 - \phi_S) \right]$                     | $\frac{1}{2} \bigg[ \cos(\delta_S - \delta_0) +  \lambda_S \lambda_0 $                                 | $\frac{1}{2} \left[  \lambda_S  \sin(\delta_S - \delta_0 - \phi_S) \right]$                      |
|    | $\cos(\delta_S - \delta_0 - \phi_S + \phi_0)$                                                                  | $- \lambda_0 \cos(\delta_0-\delta_S-\phi_0) $                                                   | $\cos(\delta_S - \delta_0 - \phi_S + \phi_0)$                                                          | $- \lambda_0 \sin(\delta_0-\delta_S-\phi_0)$                                                     |

7

#### Amplitudes and angular distributions





| k        | $A_k$                      | $f_{m k}(	heta_{\mu},	heta_{K},arphi_{h})$                           |
|----------|----------------------------|----------------------------------------------------------------------|
| 1        | $ A_0 ^2$                  | $2\cos^2\theta_K\sin^2\theta_\mu$                                    |
| 2        | $ A_{\ } ^2$               | $\sin^2\theta_k(1-\sin^2\theta_\mu\cos^2\varphi_h)$                  |
| 3        | $ A_{\perp} ^2$            | $\sin^2\theta_k(1-\sin^2\theta_\mu\sin^2\varphi_h)$                  |
| 4        | $ A_{\parallel}A_{\perp} $ | $\sin^2\theta_k \sin^2\theta_\mu \sin 2\varphi_h$                    |
| <b>5</b> | $ A_0A_{\parallel} $       | $\frac{1}{2}\sqrt{2}\sin 2\theta_k \sin 2\theta_\mu \cos \varphi_h$  |
| 6        | $ A_0A_\perp $             | $-\frac{1}{2}\sqrt{2}\sin 2\theta_k \sin 2\theta_\mu \sin \varphi_h$ |
| 7        | $ A_{S} ^{2}$              | $\frac{2}{3}\sin^2\theta_{\mu}$                                      |
| 8        | $ A_S A_{\parallel} $      | $\frac{1}{3}\sqrt{6}\sin\theta_k\sin2\theta_\mu\cos\varphi_h$        |
| 9        | $ A_S A_\perp $            | $-\frac{1}{3}\sqrt{6}\sin\theta_k\sin 2\theta_\mu\sin\varphi_h$      |
| 10       | $ A_S A_0 $                | $\frac{4}{3}\sqrt{3}\cos\theta_K\sin^2\theta_\mu$                    |

- Figure on the left: angular distribution in the helicity basis describing the decay geometry.
- Figure on the right: polarization amplitudes of the system  $J/\psi\phi$ . The short arrows indicate the spin orientation of the two vector mesons.
- Table: definition of the polarization amplitudes  $A_k$  and the angular functions  $f_k(\theta_\mu, \theta_K, \phi)$ .
- Free parameters:  $A_0^2, A_{\perp}^2, A_S^2$ .

### Flavour tagging



•  $p_0, \Delta p_0, p_1, \Delta p_1$  are free parameters.

$$\omega(\eta) = \left(p_0 + \frac{\Delta p_0}{2}\right) + \left(p_1 + \frac{\Delta p_1}{2}\right)(\eta - \langle \eta \rangle) \quad for \ B_s^0$$

- In LHCb, the tagging algorithms (taggers) can be divided into two classes.
- The opposite-side (OS) taggers rely on the fact that b quarks are predominantly produced in  $b\overline{b}$ pairs and try to infer the initial flavour from the decay chain of the respective other b quark.
- The same-side (SS) taggers exploit the charge of particles that are created in association with the fragmentation of the signal b quark.
- Each tagger returns 2 values:

$$q = 1 (B_s^0), 0 \text{ (no tagged)}, -1 (\overline{B}_s^0)$$

 $\eta = mistag probability$ 

$$\overline{\omega}(\eta) = \left(p_0 - \frac{\Delta p_0}{2}\right) + \left(p_1 - \frac{\Delta p_1}{2}\right)(\eta - \langle \eta \rangle) \quad for \, \overline{B}_s^0$$

#### Experimental artifacts and simultaneous fit

- The signal-only model has 18 free parameters. Flavour tagging adds 4 free parameters.
- We need to consider other experimental artifacts: decay-time resolution, decay-time and angular acceptances, S-wave.
- Decay-time resolution, decay-time and angular acceptances increase the model complexity without raising the number of free parameters.
- The S-wave is composed of  $K^+K^-$ -couples, which originate from the direct decay  $B_s^0(\bar{B}_s^0) \rightarrow J/\psi K^+K^-$ . This contribution has a different angular distribution and then must be separated from the signal-only model.
- The S-wave is split in the 6  $m_{KK}$ -bins: [990 1008], [1008 1016], [1016 1020], [1020 1024], [1024 1032], [1032 1050]  $\frac{Mev}{c^2}$ .
- The 2 S-wave associated parameters,  $A_{\rm S}^2$  and  $\delta_S \delta_{\perp}$ , are left free to vary in each bin.
- This brings to a simultaneous fit on 6  $m_{KK}$ -bins with 20 free parameters in common between the bins and 2 specific for each bin. Hence, totally we have 32 free parameters.
- Finally, the background is considered by associating a weight to each event, which indicates the probability that the event is a signal or background.

## Probability Density Function (PDF)

 $PDF_{v,c}^{J}(t, \Omega | q^{OS}, q^{SS}, \eta^{OS}, \eta^{SS}, \delta_t) =$  $m_{KK}$ -bins for S-wave  $\frac{1}{N_{q^{OS},q^{SS},y,c}^{\eta^{OS},\eta^{SS},\delta_{t},j}}\sum_{k=1}^{10}\tilde{A}_{k}^{j}f_{k}(\Omega)\varepsilon_{y,c}(t) \longrightarrow \text{Cubic Spline for time acceptance}$ Effective Gaussian for time resolution  $\left\{ \left[ \left( 1 + q^{OS} \left( 1 - 2\omega^{OS}(\eta_{OS}) \right) \right) \left( 1 + q^{SS} \left( 1 - 2\omega^{SS}(\eta_{SS}) \right) \right) \cdot h_{k,1}(t) + \left( 1 - q^{OS} \left( 1 - 2\overline{\omega}^{OS}(\eta_{OS}) \right) \right) \left( 1 - q^{SS} \left( 1 - 2\overline{\omega}^{SS}(\eta_{SS}) \right) \right) \cdot h_{k,-1}(t) \right] \otimes G\left( t | \sigma_{eff}(\delta_t) \right) \right\}$ **Tagging coefficients** 

## Normalization Factor



• The normalization factor can be analytically computed, but the computation is expensive.



### Validation

| Difference between LHCb and<br>Medusa                                                                                        | Statistical uncertainties in LHCb                                             |
|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|
| $\phi_s^{LHCb} - \phi_s^M = 0.0009$                                                                                          | $\delta\phi_s^{LHCb} = 0.043$                                                 |
| $\lambda_0^{LHCb} - \lambda_0^M = -0.013$                                                                                    | $\delta\lambda_0^{LHCb} = 0.045$                                              |
| $\Gamma^{LHCb} - \Gamma^M = 0.00055$                                                                                         | $\delta\Gamma^{LHCb} = 0.0024$                                                |
| $\Delta\Gamma^{LHCb} - \Delta\Gamma^{M} = -0.0007$                                                                           | $\delta\Delta\Gamma^{LHCb} = 0.0077$                                          |
| $\Delta m^{LHCb} - \Delta m^M = 0.029$                                                                                       | $\delta\Delta m = 0.060$                                                      |
| $A_{\perp}^{2,LHCb} - A_{\perp}^{2,M} = -0.0035$                                                                             | $\delta A_{\perp}^{2,LHCb} = 0.025$                                           |
| $A_0^{2,LHCb} - A_0^{2,M} = 0.0011$                                                                                          | $\delta A_0^{2,LHCb} = 0.018$                                                 |
| $ \left( \delta_{\perp}^{LHCb} - \delta_{0}^{LHCb} \right) - \left( \delta_{\perp}^{M} - \delta_{0}^{M} \right) $<br>= 0.031 | $\delta \left( \delta_{\perp}^{LHCb} - \delta_{0}^{LHCb} \right) = 0.15$      |
| $ig(\delta^{LHCb}_{\parallel}-\delta^{LHCb}_{0}ig)-ig(\delta^{M}_{\parallel}-\delta^{M}_{0}ig)=0.029$                        | $\delta \left( \delta_{\parallel}^{LHCb} - \delta_{0}^{LHCb} \right) = 0.083$ |

• The comparison has been done with the results reported in LHCb-ANA-2017-028.

## Performance



• The table summarizes the time spent to perform the objective function (FCN) evaluation with 500k events.



# Conclusions

- HEP experiments collect ever-larger datasets and their analyses get more and more complex. Moreover, the PDFs used for data modelling become more and more complicated, with hundred of free parameters.
- Not rarely, a computation spends hours to reach a result, which very often needs to be re-tuned.
- Medusa is a multithread 4-body decay fitting and simulation software created to speed up the physics data analysis.
- As a use case, we used the measurement of CP-violating  $\phi_s$ -phase in  $B_s^0(\bar{B}_s^0) \to J/\psi \phi \to \mu^+\mu^-K^+K^-$  decay, one of the golden channel for this type of research at LHCb.
- The evaluation time of the objective function (FCN) with 500000 events is about 92 ms on CUDA, which is about 330 times faster than a non-parallelized software.
- The compilation times also have been optimized. The GCC compiler spends about 1 minute to create the executable for TBB and OpenMP and NVCC about 4 minutes for CUDA.

# Distribution

- Medusa will be released on GitHub as open-source software under GPL v.3.0 license soon.
- If you are interested in the software, you can contact:
  - 1. <u>andrea.contu@cern.ch</u>
  - 2. <u>francesca.dordei@cern.ch</u>
  - 3. <u>alessandro.ricci@df.unipi.it</u>, <u>alessandro.ricci@pi.infn.it</u>
  - 4. <u>davide.brundu@cern.ch</u>

# Thank you for the attention!

# Backup

### CP-violating phase $\phi_s$

 Typically, the phase of the transition amplitude A can be split into a strong phase δ, which does not change sign, and a weak phase φ, which changes sign under CP transformation:

$$CPA = CP|A|e^{i(\phi+\delta)} = |A|e^{i(-\phi+\delta)}$$

• The heavy and light eigenstates are:

$$|B_{s,H}^{0}\rangle = p|B_{s}^{0}\rangle + q|\bar{B}_{s}^{0}\rangle, \qquad |B_{s,L}^{0}\rangle = p|B_{s}^{0}\rangle - q|\bar{B}_{s}^{0}\rangle$$

• Given the transition amplitudes  $A_{J/\psi\phi} = \langle J/\psi\phi | H | B_s^0 \rangle$  and  $\bar{A}_{J/\psi\phi} = \langle J/\psi\phi | H | \bar{B}_s^0 \rangle$ , we have

$$\lambda_{J/\psi\phi} = rac{q}{p} rac{ar{A}_{J/\psi\phi}}{A_{J/\psi\phi}} = ig| \lambda_{J/\psi\phi} ig| e^{i\phi_S}$$

• The CP is violated if  $\phi_s \neq 0$ .

### Normalization factor

$$\int_{t=0.3}^{15} \frac{ps}{ps} \sum_{k=1}^{10} \tilde{A}_{k}^{j} \varepsilon_{y,c}(t) \omega_{y,c}^{k} * rPDF(t) dt \to \sum_{k=1}^{10} \tilde{A}_{k}^{j} \omega_{y,c}^{k} \int_{t=0.3}^{15} \frac{ps}{ps} \varepsilon_{y,c}(t) * rPDF(t) dt$$

$$\sum_{k=1}^{10} \tilde{A}_k^j \omega_{y,c}^k \int_{t=0.3 \ ps}^{15 \ ps} (a_i t^3 + b_i t^2 + c_i t + d_i) * rPDF(t) \ dt \rightarrow$$

$$\sum_{k=1}^{10} \tilde{A}_{k}^{j} \omega_{y,c}^{k} \left[ \sum_{i=1}^{7} \left( a_{i} \int_{t_{i}}^{t_{i+1}} t^{3} * rPDF(t) dt \right) \sum_{i=1}^{7} \left( b_{i} \int_{t_{i}}^{t_{i+1}} t^{2} * rPDF(t) dt \right) + \sum_{i=1}^{7} \left( c_{i} \int_{t_{i}}^{t_{i+1}} t * rPDF(t) dt \right) + \sum_{i=1}^{7} \left( d_{i} \int_{t_{i}}^{t_{i+1}} rPDF(t) dt \right) \right]$$

20

### Normalization Factor

$$a_i \int_{t_i}^{t_{i+1}} t^p * rPDF(t) dt \to a_i * C_{tag} * \int_{t_i}^{t_{i+1}} t^p * h_{k,q}(t) \otimes G\left(t | \sigma_{eff}(\delta_t)\right) dt \to a_i * C_{tag} * \int_{t_i}^{t_{i+1}} t^p * h_{k,q}(t) \otimes G\left(t | \sigma_{eff}(\delta_t)\right) dt \to a_i * C_{tag} * \int_{t_i}^{t_{i+1}} t^p * h_{k,q}(t) \otimes G\left(t | \sigma_{eff}(\delta_t)\right) dt \to a_i * C_{tag} * \int_{t_i}^{t_{i+1}} t^p * h_{k,q}(t) \otimes G\left(t | \sigma_{eff}(\delta_t)\right) dt \to a_i * C_{tag} * \int_{t_i}^{t_{i+1}} t^p * h_{k,q}(t) \otimes G\left(t | \sigma_{eff}(\delta_t)\right) dt \to a_i * C_{tag} * \int_{t_i}^{t_{i+1}} t^p * h_{k,q}(t) \otimes G\left(t | \sigma_{eff}(\delta_t)\right) dt \to a_i * C_{tag} * \int_{t_i}^{t_{i+1}} t^p * h_{k,q}(t) \otimes G\left(t | \sigma_{eff}(\delta_t)\right) dt \to a_i * C_{tag} * \int_{t_i}^{t_{i+1}} t^p * h_{k,q}(t) \otimes G\left(t | \sigma_{eff}(\delta_t)\right) dt \to a_i * C_{tag} * \int_{t_i}^{t_{i+1}} t^p * h_{k,q}(t) \otimes G\left(t | \sigma_{eff}(\delta_t)\right) dt \to a_i * C_{tag} * \int_{t_i}^{t_{i+1}} t^p * h_{k,q}(t) \otimes G\left(t | \sigma_{eff}(\delta_t)\right) dt \to a_i * C_{tag} * \int_{t_i}^{t_{i+1}} t^p * h_{k,q}(t) \otimes G\left(t | \sigma_{eff}(\delta_t)\right) dt \to a_i * C_{tag} * \int_{t_i}^{t_{i+1}} t^p * h_{k,q}(t) \otimes G\left(t | \sigma_{eff}(\delta_t)\right) dt \to a_i * C_{tag} * \int_{t_i}^{t_{i+1}} t^p * h_{k,q}(t) \otimes G\left(t | \sigma_{eff}(\delta_t)\right) dt \to a_i * C_{tag} * \int_{t_i}^{t_{i+1}} t^p * h_{k,q}(t) \otimes G\left(t | \sigma_{eff}(\delta_t)\right) dt \to a_i * C_{tag} * \int_{t_i}^{t_{i+1}} t^p * h_{k,q}(t) \otimes G\left(t | \sigma_{eff}(\delta_t)\right) dt \to a_i * C_{tag} * \int_{t_i}^{t_{i+1}} t^p * h_{k,q}(t) \otimes G\left(t | \sigma_{eff}(\delta_t)\right) dt \to a_i * C_{tag} * \int_{t_i}^{t_{i+1}} t^p * h_{k,q}(t) \otimes G\left(t | \sigma_{eff}(\delta_t)\right) dt \to a_i * C_{tag} * \int_{t_i}^{t_{i+1}} t^p * h_{k,q}(t) \otimes G\left(t | \sigma_{eff}(\delta_t)\right) dt \to a_i * C_{tag} * \int_{t_i}^{t_{i+1}} t^p * h_{k,q}(t) \otimes G\left(t | \sigma_{eff}(\delta_t)\right) dt \to a_i * C_{tag} * \int_{t_i}^{t_{i+1}} t^p * h_{k,q}(t) \otimes G\left(t | \sigma_{eff}(\delta_t)\right) dt \to a_i * C_{tag} * \int_{t_i}^{t_{i+1}} t^p * h_{k,q}(t) \otimes G\left(t | \sigma_{eff}(\delta_t)\right) dt \to a_i * C_{tag} * \int_{t_i}^{t_{i+1}} t^p * h_{k,q}(t) \otimes G\left(t | \sigma_{eff}(\delta_t)\right) dt \to a_i * C_{tag} * \int_{t_i}^{t_{i+1}} t^p * h_{k,q}(t) \otimes G\left(t | \sigma_{eff}(\delta_t)\right) dt \to a_i * C_{tag} * \int_{t_i}^{t_{i+1}} t^p * h_{k,q}(t) \otimes G\left(t | \sigma_{eff}(\delta_t)\right) dt \to a_i * C_{tag} * \int_{t_i}^{t_{i+1}} t^p * h_{k,q}(t) \otimes G\left(t | \sigma_{eff}(\delta_t)\right) dt \to a_i$$

$$\frac{3C_{tag}\sigma_{eff}a_{i}p!}{8\pi\sqrt{2}}\frac{\left(\sqrt{2}\sigma_{eff}\right)^{p}}{2^{p}}\sum_{j=0}^{p}\frac{1}{j!(p-j)!}\left[a_{k}\left(K_{j}(z_{1})M_{p-j}(x_{1},x_{2};z_{1})+K_{j}(z_{2})M_{p-j}(x_{1},x_{2};z_{2})\right)\right.\\\left.+b_{k}\left(K_{j}(z_{1})M_{p-j}(x_{1},x_{2};z_{1})-K_{j}(z_{2})M_{p-j}(x_{1},x_{2};z_{2})\right)\right.\\\left.+qc_{k}\left(K_{j}(z_{3})M_{p-j}(x_{1},x_{2};z_{3})+K_{j}(z_{4})M_{p-j}(x_{1},x_{2};z_{4})\right)\right.\\\left.+\frac{qd_{k}}{i}\left(K_{j}(z_{3})M_{p-j}(x_{1},x_{2};z_{3})-K_{j}(z_{4})M_{p-j}(x_{1},x_{2};z_{4})\right)\right]$$