
Columnar Analysis at
ATLAS

Nils Krumnack (Iowa State University)
on behalf of the ATLAS computing activity

Nils Krumnack (Iowa State University)

Introduction
• traditional analysis does one event at a time
‣ read event data for one event
‣ do all processing on that event
‣ fill histograms and n-tuples
‣move on to the next event

• columnar analysis does an event loop per operation
‣ read a few variables/columns for many/all events
‣ do a single (or a couple) operation(s) on those variables
‣ can fill histograms, define new variables, etc.
‣move on to the next operation

• will typically do multiple batches of events
‣ usually too many events to load all at once
‣ allows to split jobs up for a batch system
‣ for best performance need to run batches of operations at once

2

Nils Krumnack (Iowa State University)

Data Layout
• for columnar analysis process events in batches
‣ batches presumed large enough to ignore per-batch overhead
‣want calls to CP tools/algorithms to process entire batches

• data for each variable is a contiguous array in memory, e.g.
‣ pt for object 1, followed by pt for object 2…
‣ all pts for event 1, followed by all pts for event 2…

• objects are identified by index in array
‣with later events having higher offsets

• event boundaries/offsets are available as a separate array

•need to know needed columns ahead of time
‣mostly for loading data into memory

• assume I can pass all buffers by name from python to C++ tools
‣ both for input and output variables

3

Nils Krumnack (Iowa State University)

Data Layout 2
• each variable has its own column
• can have columns for multiple object

types (jets, muons…)
• all (used) columns loaded into

memory at the same time

• all variables for one object type share
an offset map

• there is a separate offset map for each
object type

• all object types have the same events
in the same order

4

event 2

event 1

event 3

event 4

event 5

event 6

•
•
•

•
•
•

•
•
•

•
•
•

jet
pt eta

muon
pt eta

Nils Krumnack (Iowa State University)

CAna Advantages
• hope for a number of advantages
• actual advantages may vary
• still in the early prototyping stage

• easier to teach
• less boilerplate code
• analysis code less spread out/coupled
• automatically disable calculations not used for current study
• can be used with notebooks
• better code performance
• more productive in daily use
• integrate better with industry and ML tools
• experience more relevant for students leaving the field

5

Nils Krumnack (Iowa State University)

CAna at ATLAS
• can use CAna at ATLAS already
‣ analysis generally done on user-generated n-tuples
‣ n-tuples incorporate corrections, systematics, etc.
‣ n-tuples normally readable without extra software
‣ can do analysis in either event-wise or columnar analysis

• not what this talk is about

• main goal: run directly on centrally produced PHYSLITE files
‣ incorporate object corrections (Jana Schaarschmidt’s talk)
‣ need "on-the-fly" calculation of systematics, scale factors, etc.
‣ code needs to be callable from CAna frameworks

• requirement: performance competitive with n-tuple analysis
‣ otherwise users may continue using n-tuples
‣ also: don’t have infinite resources for analysis
‣ currently 1-2 orders of magnitude slower

6

Nils Krumnack (Iowa State University)

CP Tools
• mentioned CP tools in earlier talk
‣ all analysis recommendations/recipes provided via CP tools
‣ very successful system for event-wise analysis
‣CP tools shared with production and online

• can not break CP tool infrastructure
‣want to maintain ability to do event-wise analysis
‣ should also not duplicate recommendation code
‣ can rewrite the tools and infrastructure though
‣ at the very least will need to wrap existing tools

• will need a fair rework of current CP tools for CAna
‣ need to get a lot faster to meet performance goals
‣want to be as fast or faster than reading results from disk
‣ need across the board improvements for that
‣ already found substantial improvement potential for some tools

7

Nils Krumnack (Iowa State University)

Types of Tools
• most tools involve a simple lookup from histogram
‣ used for scale factors and most systematics
‣ conceptually all very similar
‣ inherently fairly simple and fast

• most other tools involve fairly simple calculations
‣ e.g. object selection tools
‣ fairly easy to transcribe to most formalisms
‣ can incorporate some into PHYSLITE production

• a few tools involve fairly complex calculations
‣ e.g. full reconstruction of missing transverse energy
‣ generally need custom C++ implementations
‣ process full events instead of single objects
‣ harder to integrate with columnar analysis

8

Nils Krumnack (Iowa State University)

Proposed Solutions
• several proposed solutions for columnar tools
‣ change existing tool to work directly in RDataFrame

(RDataFrame can handle ATLAS EDM)
‣wrap existing tools for columnar analysis

(make EDM objects wrap data columns)
‣ use ServiceX to create n-tuples on-the-fly

(straightforward, prototype exists)
‣ extend CP tools with separate columnar mode

(see later slides)
‣ use correctionlib [initially developed at CMS]

(allows abstract description of object corrections)
‣ rewrite tools in numpy
‣ some combination of the above

9

Nils Krumnack (Iowa State University)

Design Criteria
• main criteria for choosing solutions:
‣ support both columnar environments: uproot & RDataFrame
‣ also support event-wise analysis and production jobs
‣ support calculations that operate one-event-at-a-time
‣ need C++ implementations for at least some calculations
‣match/exceed performance of reading from n-tuple
‣minimize rewriting of tools

• most solutions fail on one or more points
‣ no solution is fulfilling all requirements

• can have different solutions for different classes of tools

• investigating two solutions right now:
‣ correctionlib: well-established at CMS for single object tools
‣ triple-use tools: custom solution to match above criteria

10

Nils Krumnack (Iowa State University)

Triple-Use Tools
• current recommendations are provided via dual-use CP tools
‣ can be used in both the analysis and production framework
‣ uses conditional compilation to select one or the other

• plan to extend that to triple-use tools
‣ add columnar analysis as a third usage mode
‣ provide zero-overhead, vectorizable access to data columns

• design centers heavily around data handles
‣ handles are member objects for each CP tool
‣ all data access happens through handles
• regular mode: handles access event data from whiteboard
• columnar mode: data columns get loaded into handles
‣ handles also declare inputs/outputs

• objects identified via ObjectId objects
‣ regular mode: pointer to EDM objects
‣ columnar mode: simple index into data column

11

Nils Krumnack (Iowa State University)

Mock Code
• simplified mock-up of what code would look like
• C++ side inspired by current tool design
• buffers managed purely on the python side
• python buffers get connected to C++ handles

12

class MuonTool {
 ObjectHandle muons;
 ReadHandle pt;
 ReadHandle eta;
 WriteHandle output;

 void apply (MuonId muon) {
 output[muon] =
 calc (pt[muon], eta[muon]);
 }
 …
};

import uproot as up
tool = MuonCPTool ()
for batch in up.iterate_batches(…):

 for var in tool.inputs() :
 tool.setBuffer (var, batch[var]…)
 for var in tool.outputs() :
 buffer = …
 tool.setBuffer (var, buffer)
 tool.apply_batch()

user code here

Nils Krumnack (Iowa State University)

Anticipated Rollout
• mostly talked about plans today
‣ have a prototype for triple-use tools

• did benchmarking for correctionlib and triple-use tools, results:
‣ correctionlib is not faster than existing CP tool
‣ no overhead passing data from python into triple-use tools

• ultimate goal: run directly on PHYSLITE
‣ requires full suite of tools available
‣ requires all tools to be fast enough
‣ allows elimination of user n-tuples

• stepping stone: run on user n-tuples
‣ can be done one tool at a time
‣ allows to gain experience with simple tools first
‣ replace n-tuple variables with on-the-fly calculations
‣ immediate benefit: smaller user n-tuples

13

Nils Krumnack (Iowa State University)

Summary & Outlook
• columnar analysis still in early stages at ATLAS
‣ can do CAna on current user n-tuples
‣ hope to replace n-tuple variables with "on-the-fly" calculations

• ultimate goal: running directly on PHYSLITE files
‣would avoid the need for intermediate n-tuples
‣ aim to be ready for Run 4
‣ partial solutions would already be useful for n-tuple analysis

• main issue: how to do "on-the-fly" calculations
‣ need columnar interface for CP tools
‣ need substantial performance improvements
‣ need some rework of algorithms and PHYSLITE content
‣ prototyping and benchmarking multiple solutions
‣ still in the early stages

14

