
https://root.cern

ROOT
Data Analysis Framework

Analysis Grand Challenge
implementation with a
Pythonic RDataFrame

V.E.Padulano, E.Guiraud, A.Falko

https://root.cern

Introduction

RDataFrame: declarative interface for data analysis

2

Enable multithreading
ROOT.EnableImplicitMT()
df = ROOT.RDataFrame(dataset)

Create observable
df = df.Define("my_px", "px[eta > 0]")

Fill in a single pass
h1 = df.Histo1D("px")
h1 = df.Histo1D("my_px")

ROOT>=6.14

Wide adoption
(see RDF@ICHEP2022)

Improving with the
community

https://agenda.infn.it/event/28874/contributions/169191/

Introduction

RDataFrame: entry point to modern ROOT

3

ML inference

See ACAT2022 talk

https://indico.cern.ch/event/1106990/contributions/4998129/

RDataFrame for AGC

▶ Analysis Grand Challenge (AGC): realistic HEP analysis
benchmarks with tools to execute them

▶ Using RDataFrame to implement ttbar example
▶ Reference benchmark snapshotted at tag v.0.1
▶ Code available on github

4

https://iris-hep.org/projects/agc.html
https://github.com/iris-hep/analysis-grand-challenge/releases/tag/v0.1.0
https://github.com/vepadulano/analysis-grand-challenge/tree/rdf-agc-chep-2023

The translation

Event selection

5

RDataFrame

coffea

The translation

Event selection

6

RDataFrame

coffea

The translation

Trijets

7

RDataFrame

coffea

Distributing the AGC

RDataFrame distributed: seamlessly leverage clusters

8

from pyspark import SparkContext

df = RDataFrame('treename', 'filename.root',

 sparkcontext = SparkContext('spark://IP:PORT'))

from dask.distributed import Client

df = RDataFrame('treename', 'filename.root',

 daskclient = Client('tcp://hostname:port'))

HTC

SSH

K8s

Slurm

Dask

Distributing the AGC

9

SWAN
VRE

coffea-casa

https://swan.web.cern.ch/swan/
https://indico.jlab.org/event/459/contributions/11671/
https://indico.jlab.org/event/459/contributions/11610/

Distributing the AGC

10

Distributing the AGC

11

No change in analysis
code required!

Distributing the AGC

Hardware setup:
● 32 physical cores per node (no hyperthreading)
● 512 GB RAM
● 100 Gbps network
● Managed through Slurm

Config:
● Using from 1 to 8 computing nodes, exclusive access
● Requesting 1 extra node for the scheduler

12

Distributing the AGC

13

End-to-end runtime Speedup

More performance studies in Andrea Sciabà’s talk

https://indico.jlab.org/event/459/contributions/11613/

Pythonizing the interface

▶ RDataFrame offers the flexibility to express virtually any
HEP analysis

▶ This includes allowing any C++ code to be executed
through the API

▶ Leads to language overlaps when using Python
▶ WIP: enable pure Python interface through numba JIT

14

https://numba.pydata.org/numba-doc/latest/index.html

Pythonizing the interface

Simple cases: directly pass Python lambdas

Difficult cases: leverage cppyy wrappers

15

https://cppyy.readthedocs.io/en/latest/

Pythonizing the interface

Simple cases: directly pass Python lambdas

Difficult cases: leverage cppyy wrappers

16

We can be as good as numba

https://cppyy.readthedocs.io/en/latest/

Pythonizing the interface

Simple cases: directly pass Python lambdas

Difficult cases: leverage cppyy wrappers

17

We can be as good as numba

Support for fundamental types
and arrays thereof (through RVec<T>)

No RVec<RVec<...>>

Pythonizing the interface

Simple cases: directly pass Python lambdas

Difficult cases: leverage cppyy wrappers

18

We can be as good as numba

Support for fundamental types
and arrays thereof (through RVec<T>)

No RVec<RVec<...>>

Improvements happen
transparently
e.g. cppyy<->numba (see
ACAT2022), awkward<->numba (see
CHEP2023)

https://indico.cern.ch/event/1106990/contributions/4991292/
https://indico.jlab.org/event/459/contributions/11557/

Conclusions

▶ Implemented the ttbar example from AGC with
RDataFrame

▶ Multithreading or distributed execution just work
▶ New Pythonizations shorten the interface gap

19

Questions?

