
Making Likelihood Calculations Fast:
Automatic Differentiation Applied to RooFit

Garima Singh (Princeton University), Jonas Rembser (CERN),
Lorenzo Moneta (CERN), David Lange (Princeton University),

Vassil Vassilev (Princeton University)
compiler-research.org

This project was supported in part by the NSF (USA) Grant OAC-1931408 and NSF
(USA) Cooperative Agreement OAC-1836650.

https://www.google.com/url?q=https://compiler-research.org/&sa=D&source=editors&ust=1683558384050045&usg=AOvVaw02ajXWPz5NJokUbRMD3Xq_

1

Introduction
Source Code Transformation Based Automatic Differentiation

Automatic Differentiation (AD) is a set of techniques to evaluate the exact derivative of a
computer program.

Making Likelihood Calculations Fast: Automatic Differentiation Applied to RooFit - Garima Singh | 26th edition of CHEP 8 May. 2023

Source code transformation based AD synthesizes
derivative code from the internal representation of the
target program.

Clad[1], a compiler based source-code-transformation AD tool. Clad inspects the internal
compiler representation of the target function to generates its derivative.

[1] : https://github.com/vgvassilev/clad

Input code Derivative code

…101…
…110…
…101…
…110…

Object code

AD Tool Compiler

● Faster than numerical differentiation - scales better for problems with large number of parameters.
● More accurate than numerical differentiation - fewer numerical errors!

https://www.google.com/url?q=https://github.com/vgvassilev/clad&sa=D&source=editors&ust=1683558384919400&usg=AOvVaw1_XTC_LD1fhyNISR9jyZVC

2

Motivation
Why AD?

Making Likelihood Calculations Fast: Automatic Differentiation Applied to RooFit - Garima Singh | 26th edition of CHEP 8 May. 2023
Image ref: Automatic Differentiation of Binned Likelihoods With Roofit and Clad - Garima Singh,Jonas Rembser, Lorenzo Moneta, Vassil Vassilev, ACAT 2022

3

Motivation
Okay, but why AD in RooFit????

Making Likelihood Calculations Fast: Automatic Differentiation Applied to RooFit - Garima Singh | 26th edition of CHEP 8 May. 2023

Performance comparison AD vs numerical differentiation on hf_001 inspired example

Singh, G., Rembser, J., Moneta, L., Lange, D., & Vassilev, V. (2023). Automatic Differentiation of Binned Likelihoods With Roofit and Clad. ArXiv [Cs.MS].
Retrieved from http://arxiv.org/abs/2304.02650

~5.5x speedup
Great results on proof of concept!
Next step: integrate this into RooFit

https://www.google.com/url?q=http://arxiv.org/abs/2304.02650&sa=D&source=editors&ust=1683558385874180&usg=AOvVaw2ak0WEN1uAtfJBVajl1z87
https://www.google.com/url?q=http://arxiv.org/abs/2304.02650&sa=D&source=editors&ust=1683558385874394&usg=AOvVaw2Dn8wptRcB-0zJRYsnrBmV

4

Automatic Differentiation in RooFit
How Does it work?

Making Likelihood Calculations Fast: Automatic Differentiation Applied to RooFit - Garima Singh | 26th edition of CHEP 8 May. 2023

What that we want to differentiate

Made up of various RooFit objects

A typical RooFit statistical model

Feed to AD tool
AD Tool

5

Automatic Differentiation in RooFit
How Does it work?

Making Likelihood Calculations Fast: Automatic Differentiation Applied to RooFit - Garima Singh | 26th edition of CHEP 8 May. 2023

What that we want to differentiate

Made up of various RooFit objects

A typical RooFit statistical model

RooFit has an object oriented model which
deliberately hides the differential properties of

the nodes in favor of ease of use.

Feed to AD tool
AD Tool

C++ code the AD tool can
understandSome way to expose differentiable

properties of the graph as code.

6

Automatic Differentiation in RooFit
How Does it work?

Making Likelihood Calculations Fast: Automatic Differentiation Applied to RooFit - Garima Singh | 26th edition of CHEP 8 May. 2023

What that we want to differentiate C++ code the AD tool can
understand

Define 2 Functions in RooFit

void RooGaussian::translate(...) override {

 result = "ADDetail::gauss(" +

 _x->getResult() +

 " ," + _mu->getResult() +

 " ," + _sigma->getResult() + ")";

}

The “glue” function enabling graph squashing.

double ADDetail::gauss(double x, double mean, double sigma) {

 const double arg = x - mean;

 const double sig = sigma;

 return std::exp(-0.5 * arg * arg / (sig * sig));

}

Stateless function enabling differentiation of each class.

7

Automatic Differentiation in RooFit
How Does it work?

Making Likelihood Calculations Fast: Automatic Differentiation Applied to RooFit - Garima Singh | 26th edition of CHEP 8 May. 2023

What that we want to differentiate C++ code the AD tool can
understand

Define 2 Functions in RooFit

ADDetail::gauss(x, mu, sig)
The equivalent code generated

RooGaussian::evaluate()
The RooFit call to evaluate a gaussian

ADDetail::gauss(x, mu, sig) / ADDetail::gaussIntegral(...)

The equivalent code generated
(given the class supports analytical integrals)

- Bookkeeping

& caching

8

Automatic Differentiation in RooFit
The Big Picture

Making Likelihood Calculations Fast: Automatic Differentiation Applied to RooFit - Garima Singh | 26th edition of CHEP 8 May. 2023

What that we want to differentiate C++ code the AD tool can
understand

C++ code the AD tool can
understand

The AD tool Derivative code of the model!

Roo*::translate()

‘Squash’ the graph into code

9Making Likelihood Calculations Fast: Automatic Differentiation Applied to RooFit - Garima Singh | 26th edition of CHEP 8 May. 2023

Current Status
What Can I Do Right Now?*

root[0] RooWorkspace myWS;

root[1] myWS.factory("sum::mu_shifted(mu[0, -10, 10], shift[1.0, -10, 10])");

root[2] myWS.factory("prod::sigma_scaled(sigma[3.0, 0.01, 10], 1.5)");

root[3] myWS.factory("Gaussian::gauss(x[0, -10, 10], mu_shifted, sigma_scaled)");

root[4] RooAbsReal &x = *myWS.var("x");

root[5] RooAbsPdf &pdf = *myWS.pdf("gauss");

root[6] RooArgSet normSet{x};

*In ROOT master as of May 2023.

10Making Likelihood Calculations Fast: Automatic Differentiation Applied to RooFit - Garima Singh | 26th edition of CHEP 8 May. 2023

Current Status
What Can I Do Right Now?*

(double (*)(double *, const double *)) Function @0x7fcfbd2f6000

 at input_line_19:1:

double myGauss(double *params, double const *obs)

{

 const double sigma_scaled = params[2] * 1.5;

 const double mu_shifted = params[0] + params[1];

 const double gauss_Int_x = ADDetail::gaussianIntegral(-10, 10, mu_shifted, sigma_scaled);

 const double gauss = ADDetail::gauss(params[3], mu_shifted, sigma_scaled);

 const double normGauss = gauss / gauss_Int_x;

 return normGauss;

}

root[6] RooFuncWrapper gaussFunc("myGauss", "myGauss", pdf, normSet);

root[7] gaussFunc.dumpCode();

*In ROOT master as of May 2023.

11Making Likelihood Calculations Fast: Automatic Differentiation Applied to RooFit - Garima Singh | 26th edition of CHEP 8 May. 2023

Current Status
What Can I Do Right Now?*

(double (*)(double *, const double *)) Function @0x7fcfbd2f6000

 at input_line_19:1:

double myGauss(double *params, double const *obs)

{

 const double sigma_scaled = params[2] * 1.5;

 const double mu_shifted = params[0] + params[1];

 const double gauss_Int_x = ADDetail::gaussianIntegral(-10, 10, mu_shifted, sigma_scaled);

 const double gauss = ADDetail::gauss(params[3], mu_shifted, sigma_scaled);

 const double normGauss = gauss / gauss_Int_x;

 return normGauss;

}

root[6] RooFuncWrapper gaussFunc("myGauss", "myGauss", pdf, normSet);

root[7] gaussFunc.dumpCode();

“sum::mu_shifted(mu[0, -10, 10], shift[1.0, -10, 10])”

“prod::sigma_scaled(sigma[3.0, 0.01, 10], 1.5)”

“Gaussian::gauss(x[0, -10, 10], mu_shifted, sigma_scaled)”

*In ROOT master as of May 2023.

12

Results

Making Likelihood Calculations Fast: Automatic Differentiation Applied to RooFit - Garima Singh | 26th edition of CHEP 8 May. 2023

18x Faster!

Tested on ROOT master as of May 2023.
*Excludes the seed generation time, more info - look here

13

Results

Making Likelihood Calculations Fast: Automatic Differentiation Applied to RooFit - Garima Singh | 26th edition of CHEP 8 May. 2023

18x Faster!RooFit has clear advantages over
“hand-writing” models, but can be

pushed more with AD!

Tested on ROOT master as of May 2023.
*Excludes the seed generation time, more info - look here

14

Results
Why??

Making Likelihood Calculations Fast: Automatic Differentiation Applied to RooFit - Garima Singh | 26th edition of CHEP 8 May. 2023
Tested on ROOT master as of May 2023.

~86 ms

~11 ms 58

136

Configuration
(700 params) Time / Iteration

Total Iterations
to Converge

RooFit Numerical-Diff

Code-Squashing AD

Code-Squashing Numerical-Diff ~380 ms 136

659551.9860

659552.2917

Final FCN
Value

659552.2918

15

Results
Why? Code-Squashing vd RooFit (Numerical)

Making Likelihood Calculations Fast: Automatic Differentiation Applied to RooFit - Garima Singh | 26th edition of CHEP 8 May. 2023
Tested on ROOT master as of May 2023.

~86 ms

~11 ms 58

136

Configuration
(700 params) Time / Iteration

Total Iterations
to Converge

RooFit Numerical-Diff

Code-Squashing AD

Code-Squashing Numerical-Diff ~380 ms 136

659551.9860

659552.2917

Final FCN
Value

659552.2918

~ 3.5x Slower time/iteration.

Why? Even Though both use num-diff, RooFit
uses complex caching logic, making it faster!

16

Results
Why? Code-Squashing AD vs RooFit Numerical

Making Likelihood Calculations Fast: Automatic Differentiation Applied to RooFit - Garima Singh | 26th edition of CHEP 8 May. 2023
Tested on ROOT master as of May 2023.

~86 ms

~11 ms 58

136

Configuration
(700 params) Time / Iteration

Total Iterations
to Converge

RooFit Numerical-Diff

Code-Squashing AD

Code-Squashing Numerical-Diff ~380 ms 136

659551.9860

659552.2917

Final FCN
Value

659552.2918

~ 8x Faster Derivatives

Why? AD is faster than NumDiff,
esp. For large number of params!

16

Results
Why? Code-Squashing AD vs RooFit Numerical

Making Likelihood Calculations Fast: Automatic Differentiation Applied to RooFit - Garima Singh | 26th edition of CHEP 8 May. 2023
Tested on ROOT master as of May 2023.

~86 ms

~11 ms 58

136

Configuration
(700 params) Time / Iteration

Total Iterations
to Converge

RooFit Numerical-Diff

Code-Squashing AD

Code-Squashing Numerical-Diff ~380 ms 136

659551.9860

659552.2917

Final FCN
Value

659552.2918

Faster (and better) Convergence (for large fits)

Why? AD is more numerically stable than
NumDiff. Less num error = faster convergence!

~ 8x Faster Derivatives

Why? AD is faster than NumDiff,
esp. For large number of params!

17Making Likelihood Calculations Fast: Automatic Differentiation Applied to RooFit - Garima Singh | 26th edition of CHEP 8 May. 2023

Conclusion
Summary and Future Work

● Completely avoid the use of numerical gradients in fits using MINUIT.

● Extend support to cover HistFactory and other parts of RooFit.

● Optimize Clad generated derivatives and further explore how they can be
parallelized (OpenMP or CUDA).

Our work presents an efficient way to translate complex models such that they can be
differentiated using AD. We demonstrate that AD can be used to effectively lower the
fitting time for non-trivial models.

Work with experiments to show similar speedups on their production workflows.

The End!
Questions?

18

garima.singh@cern.ch

https://github.com/grimmmyshini

https://www.linkedin.com/in/garimasingh28/

Making Likelihood Calculations Fast: Automatic Differentiation Applied to RooFit - Garima Singh | 26th edition of CHEP 8 May. 2023

mailto:garima.singh@cern.ch
https://www.google.com/url?q=https://github.com/grimmmyshini&sa=D&source=editors&ust=1683558387046271&usg=AOvVaw2ATVaRG5z8pwTqL20O0jH_
https://www.google.com/url?q=https://www.linkedin.com/in/garimasingh28/&sa=D&source=editors&ust=1683558387047239&usg=AOvVaw3rObx5K5C2uKfBxnSuNpHU

Backup

Making Likelihood Calculations Fast: Automatic Differentiation Applied to RooFit - Garima Singh | 26th edition of CHEP 8 May. 2023

Backup
Model From Benchmarks

Plot for number of channels = 1

Making Likelihood Calculations Fast: Automatic Differentiation Applied to RooFit - Garima Singh | 26th edition of CHEP 8 May. 2023

Backup
Model From Benchmarks

RooRealVar c("c", "c", -0.5, -0.8, 0.2);

RooExponential expo("expo", "expo", x, c);

// Create two Gaussian PDFs g1(x,mean1,sigma) anf g2(x,mean2,sigma) and their parameters

RooRealVar mean1("mean1", "mean of gaussians", 3, 0, 5);

RooRealVar sigma1("sigma1", "width of gaussians", 0.8, .01, 3.0);

RooRealVar mean2("mean2", "mean of gaussians", 6, 5, 10);

RooRealVar sigma2("sigma2", "width of gaussians", 1.0, .01, 3.0);

RooGaussian sig1("sig1", "Signal component 1", x, mean1, sigma1);

RooGaussian sig2("sig2", "Signal component 2", x, mean2, sigma2);

// Sum the signal components

RooRealVar sig1frac("sig1frac", "fraction of signal 1", 0.5, 0.0, 1.0);

RooAddPdf sig("sig", "g1+g2", {sig1, sig2}, {sig1frac});

// Sum the composite signal and background

RooRealVar sigfrac("sigfrac", "fraction of signal", 0.4, 0.0, 1.0);

RooAddPdf model("model"), "g1+g2+a", {sig, expo}, {sigfrac});

Making Likelihood Calculations Fast: Automatic Differentiation Applied to RooFit - Garima Singh | 26th edition of CHEP 8 May. 2023

Backup
Share of fitting time for 700 parameters

Minimization TimeSeeding Time

RooFit Num-Diff Code Squashing
Num-Diff

Code Squashing AD

Seeding uses numerical differentiation = Larger times for AD

130 ms

11700 ms 51762 ms

652 ms

723 ms 730 ms

Possible Fix? Use AD here too!

Seeding: initial parameter scale estimation to get the step size for the minimization.

Making Likelihood Calculations Fast: Automatic Differentiation Applied to RooFit - Garima Singh | 26th edition of CHEP 8 May. 2023

Backup
How models are translated

NLL

 GAUSS
code +=
RooGaussian::Translate({});

code +=
RooNLLVar::Translate();

// Declare the code
gInterpreter->Declare(code.c_str());
// Get the derivatives of ‘code’
gInterpreter->ProcessLine("clad::gradient(code);");
// Use code_grad in wrappers that interface with
// the minimizer.

The parent node queries the
results from the child nodes.

Backup
Clad - Compiler Based AD Tool

Making Likelihood Calculations Fast: Automatic Differentiation Applied to RooFit - Garima Singh | 26th edition of CHEP 8 May. 2023

Clad, a compiler based source-code-transformation AD tool. Clad inspects the internal
compiler representation of the target function to generates its derivative.

double absFunc(double x) {

 if (x < 0) return -x;

 else return x;

}

double absFunc_darg0(double x) {

 double _d_x = 1;

 if (x < 0) return -_d_x;

 else return _d_x;

}

clad::differentiate(absFunc)

Can be used within Cling[2], the C++ interpreter used with ROOT.

[2] :https://github.com/root-project/cling

Off the shelf JIT compiled Derivatives!

Backup
Numerical error and convergence rates: EDM vs Iterations

Making Likelihood Calculations Fast: Automatic Differentiation Applied to RooFit - Garima Singh | 26th edition of CHEP 8 May. 2023

RooFit Numerical-Diff
(Without offsetting)

AD Code-Squashing

Large number of parameters usually causes numerical issues[3] with minimizations, leading to
fluctuation in step sizes and eventually leading to longer or no convergence.

[3] :https://root.cern.ch/root/htmldoc/guides/minuit2/Minuit2.html#convergence-in-mboxmigrad-and-positivedefiniteness

