
International Conference on Computing in High Energy & Nuclear Physics - May 8th , 2023

Build-a-Fit: RooFit Parallelisation
and Benchmarking Tools

Zef Wolffs (Nikhef, speaker), Patrick Bos (Netherlands eScience center),
Lydia Brenner (Nikhef), Wouter Verkerke (Nikhef), Ivo van Vulpen (Nikhef)

• In high energy physics, hypothesis testing is done by fitting likelihood models to datasets

• In principle, parallelising this problem is not hard, remember the likelihood model

• The evaluation of each event can be calculated fully independently and thus in parallel
• Even more so, likelihood models in high energy physics are generally also constructed

from independent components which could also be evaluated in parallel

2

Background

−log L(θ |x) = − log
N

∏
i=0

p(xi |θ) = −
N

∑
i=0

log(p(xi |θ)) = − log(p(x1 |θ)) − log(p(x2 |θ)) − . . .

parallel task 1 parallel task 2

simplified likelihood model

independent
evaluations

• In practice though, models quickly grow quite convoluted, Higgs combination fits for
example incorporate hundreds of smaller likelihood models with varying structures and data
• This makes it hard to find any general parallelisation strategy with optimal load balancing

3

Background

• The above likelihood models are those with the longest fit durations, currently taking hours
• The challenge at hand: Developing a multiprocessing strategy to significantly speed

up these complex fits while not compromising on robustness

Recent Higgs combination pdf computational graph (image courtesy of Nicolas Morange)

HGam

boosted Hbb
HZZ

HWW

Htautau

VHbb
ttHbb

combPdf
VBF Hbb

• In practice though, models quickly grow quite convoluted, Higgs combination fits for
example incorporate hundreds of smaller likelihood models with varying structures and data
• This makes it hard to find any general parallelisation strategy with optimal load balancing

4

Background

• The above likelihood models are those with the longest fit durations, currently taking hours
• The challenge at hand: Developing a multiprocessing strategy to significantly speed

up these complex fits while not compromising on robustness

Recent Higgs combination pdf computational graph (image courtesy of Nicolas Morange)

• A general parallel framework RooFit::MultiProcess was written to serve as a
foundation for any RooFit parallelisation efforts
• Uses ZMQ for interprocess communication
• Interfaces with rest of RooFit through RooFit::MultiProcess::Job

5

A General Parallel RooFit Framework

Job.cxx

#likelihood

...

+ evaluate_task() = 0

+ update_state() = 0

...

LikelihoodGradientJob.cxx

+ fillGradient()

+ update_state()

- evaluate_task()

...

LikelihoodGradientWrapper.cxx

#likelihood

...

+fillGradient() = 0

...

Any future
parallel roofit

task?

LikelihoodWrapper

#likelihood

...

+evaluate() = 0

...

LikelihoodJob.cxx

+ evaluate()

+ update_state()

- evaluate_task()

...

RooFit::MultiProcess knows how to
interact with “Job” base classes

The rest of RooFit knows how
to interact with likelihoods,

gradients, etc…

Classes that inherit from MultiProcess::Job
thus interface multiprocessing code with

the rest of RooFit

6

A General Parallel RooFit Framework

if/else

call to
evaluate()

Master Process Queue Process

update worker state

Worker Processes Calling Code
e.g. LikelihoodJob

add task(s)

dequeue request

dequeue reject

dequeue accept
+ task

[no task]

[task]

task result

for all
tasks

evaluation
done

RooFit::MultiProcessRooFit::TestStatistics

• The UML sequence diagram
included on the right displays a
simplified version of the
RooFit::MultiProcessing
execution flow

• Much more detailed UML diagrams
of RooFit::MultiProcessing
can be found in previous CHEP
proceedings [1]

[1] Bos, EG Patrick, et al. "Faster RooFitting: Automated parallel calculation of collaborative statistical models." Journal of Physics: Conference Series. Vol. 1525. No. 1. IOP Publishing, 2020.

7

A General Parallel RooFit Framework

if/else

call to
evaluate()

Master Process Queue Process

update worker state

Worker Processes Calling Code
e.g. LikelihoodJob

add task(s)

dequeue request

dequeue reject

dequeue accept
+ task

[no task]

[task]

task result

for all
tasks

evaluation
done

RooFit::MultiProcessRooFit::TestStatistics

A parallel evaluation starts
with some derived class of

Job requesting parallel
evaluation

8

A General Parallel RooFit Framework

if/else

call to
evaluate()

Master Process Queue Process

update worker state

Worker Processes Calling Code
e.g. LikelihoodJob

add task(s)

dequeue request

dequeue reject

dequeue accept
+ task

[no task]

[task]

task result

for all
tasks

evaluation
done

RooFit::MultiProcessRooFit::TestStatistics

A parallel evaluation starts
with some derived class of

Job requesting parallel
evaluation

Master tells workers how
to synchronise their state

9

A General Parallel RooFit Framework

if/else

call to
evaluate()

Master Process Queue Process

update worker state

Worker Processes Calling Code
e.g. LikelihoodJob

add task(s)

dequeue request

dequeue reject

dequeue accept
+ task

[no task]

[task]

task result

for all
tasks

evaluation
done

RooFit::MultiProcessRooFit::TestStatistics

A parallel evaluation starts
with some derived class of

Job requesting parallel
evaluation

Master tells workers how
to synchronise their state

Master submits parallel
tasks to queue

10

A General Parallel RooFit Framework

if/else

call to
evaluate()

Master Process Queue Process

update worker state

Worker Processes Calling Code
e.g. LikelihoodJob

add task(s)

dequeue request

dequeue reject

dequeue accept
+ task

[no task]

[task]

task result

for all
tasks

evaluation
done

RooFit::MultiProcessRooFit::TestStatistics

A parallel evaluation starts
with some derived class of

Job requesting parallel
evaluation

Master tells workers how
to synchronise their state

Master submits parallel
tasks to queue

Workers request tasks
from queue in loop

11

A General Parallel RooFit Framework

if/else

call to
evaluate()

Master Process Queue Process

update worker state

Worker Processes Calling Code
e.g. LikelihoodJob

add task(s)

dequeue request

dequeue reject

dequeue accept
+ task

[no task]

[task]

task result

for all
tasks

evaluation
done

RooFit::MultiProcessRooFit::TestStatistics

A parallel evaluation starts
with some derived class of

Job requesting parallel
evaluation

Master tells workers how
to synchronise their state

Master submits parallel
tasks to queue

Workers request tasks
from queue in loop

Queue assigns task with
highest priority if available

12

A General Parallel RooFit Framework

if/else

call to
evaluate()

Master Process Queue Process

update worker state

Worker Processes Calling Code
e.g. LikelihoodJob

add task(s)

dequeue request

dequeue reject

dequeue accept
+ task

[no task]

[task]

task result

for all
tasks

evaluation
done

RooFit::MultiProcessRooFit::TestStatistics

A parallel evaluation starts
with some derived class of

Job requesting parallel
evaluation

Master tells workers how
to synchronise their state

Master submits parallel
tasks to queue

Workers request tasks
from queue in loop

Workers execute assigned
task and send result to

master

Queue assigns task with
highest priority if available

13

A General Parallel RooFit Framework

if/else

call to
evaluate()

Master Process Queue Process

update worker state

Worker Processes Calling Code
e.g. LikelihoodJob

add task(s)

dequeue request

dequeue reject

dequeue accept
+ task

[no task]

[task]

task result

for all
tasks

evaluation
done

RooFit::MultiProcessRooFit::TestStatistics

A parallel evaluation starts
with some derived class of

Job requesting parallel
evaluation

Master tells workers how
to synchronise their state

Master submits parallel
tasks to queue

Workers request tasks
from queue in loop

Workers execute assigned
task and send result to

master

Queue assigns task with
highest priority if available

The master process has
received all tasks and

evaluation is done, rest of
RooFit proceeds as usual

• The ordering of parallel tasks can significantly impact the total runtime of a parallel program
• Suboptimal ordering in cases where task duration varies strongly can cause processes to

idle

• RooFit::MultiProcessing implements custom task ordering
• Can be dynamically updated with timing information as the variable metric steps progress
• Reduces gradient calculation time by more than 5% for 10 workers “for free”

14

Task Ordering Optimisation

When ending with the
smallest jobs workers do not
have to wait for each other

• The ordering of parallel tasks can significantly impact the total runtime of a parallel program
• Suboptimal ordering in cases where task duration varies strongly can cause processes to

idle

• RooFit::MultiProcessing implements custom task ordering
• Can be dynamically updated with timing information as the variable metric steps progress
• Reduces gradient calculation time by more than 5% for 10 workers “for free”

15

Task Ordering Optimisation

But what if this task
were here instead?

Minimisation with Gradient and
Likelihood Parallelisation

• The principle behind most minimisation routines consists of

 until some stopping condition is satisfied

• For Minuit2, the minimisation routine that RooFit uses, the
following holds

• p is the step direction, determined by the variable metric
method, the most expensive part of which is the
calculation of the gradient (O(N) likelihood evals)

• is the step size in the given direction, determined by a
line search step, the most expensive part of which is the
evaluation of the full likelihood (O(3) likelihood evals)

λ

17

A Brief Reminder on Likelihood Minimisation

G
ra

di
en

t
G

ra
di

en
t

G
ra

di
en

t

lsearch

lsearch

Execution time for
partial derivatives
may vary strongly

Pa
rt

ia
l

de
riv

at
iv

e
Pa

rt
ia

l
de

riv
at

iv
e

18

Gradient Parallelisation
G

ra
di

en
t

G
ra

di
en

t
G

ra
di

en
t

lsearch

lsearch

• RooFit::TestStatistics splits the gradient
into individual partial derivative tasks

• The task (partial derivatives) sizes may vary
strongly due to
• Most components only being dependent on

subset of parameters, thus not all components
need evaluation for every partial derivative

• Varying likelihood component calculation
complexity

• Dynamic load balancing is crucial and is currently
addressed by
• Work stealing algorithm
• Task ordering by duration

19

Gradient Parallelisation - Benchmarking

• The heat map on the right shows a single
gradient calculation, distributed across
multiple workers
• This particular gradient took place when

fitting a workspace

• Remember the gradient:

• The x-axis indicates the likelihood
component

• The y-axis indicates a parallel task, in this
case split by partial derivatives

H → WW

∇NLL =
∂NLL

∂x
=

∂x1
NLL(comp.1) + ∂x1

NLL(comp.2) + . . .
∂x2

NLL(comp.1) + ∂x2
NLL(comp.2) + . . .

⋮

Pa
ra

lle
l t

as
k

Likelihood component

20

Gradient Parallelisation - Benchmarking

• Not all parameters present in all likelihood
components
• If this is the case, no evaluation is

necessary and the result is returned
immediately

• Explains the black regions in heatmap

• Benchmarking tools now available in RooFit
• TimingAnalysis argument in

RooMinimizer enables profiling
• RooFit::MultiProcess::HeatmapAna
lyzer() to create a heatmap

Pa
ra

lle
l t

as
k

Likelihood component

21

Gradient Parallelisation - Benchmarking

• Not all parameters present in all likelihood
components
• If this is the case, no evaluation is

necessary and the result is returned
immediately

• Explains the black regions in heatmap

• Benchmarking tools now available in RooFit
• TimingAnalysis argument in

RooMinimizer enables profiling
• RooFit::MultiProcess::HeatmapAna
lyzer() to create a heatmap

these parameters
appear only in

a single
component!

Pa
ra

lle
l t

as
k

Likelihood component

22

Likelihood Parallelisation

• In some cases, evaluation of the likelihood can be the bottleneck, for example in the
calculation of the line search step
• During the line search step all parameters are typically changed two or three times,

requiring an evaluation of all components of the likelihood
• With the gradient sufficiently optimised, this can become the bottleneck for an entire fit

• RooFit::TestStatistics has two options for splitting likelihood evaluation into tasks
• By events: each task is defined by an event range to execute
• By components: each task is defined by a set of components to execute

Results

• Used recent Higgs combination workspace produced for 10 year Higgs anniversary paper [2]
• The line search is work in progress, gradient can be used out of the box in ROOT 6.28

• For the line search timings was removed from the combination workspaceH → γγ
24

Scaling of Line Search and Gradient

[2] The ATLAS Collaboration. A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery. Nature 607, 52–59 (2022). https://doi.org/10.1038/s41586-022-04893-w

25

Full Higgs Combination Fit Scaling

• With gradient parallelisation the achieved speedup with
16 workers is 4.6, including all serial components
• This brings the walltime down from 2 hours and 12

minutes to 29 minutes
• At that point, nearly half of the walltime is spent in

serial parts

• With line search parallelisation fully integrated we can
reasonably expect to reach a total speedup of 5.3
• Would bring walltime down to 25 minutes

Conclusions

27

Conclusions

• Higgs combination fits and the future hi-lumi LHC pose
significant challenges to high energy physics analysis software

• RooFit addresses these challenges through improvements in
multiple directions
• Automatic differentiation (Garima’s talk!)
• Batched computations and vectorisation (Jonas’ talk!)
• Multiprocessing

• Consolidation of these efforts is an important next step on the
agenda
• For example, multiprocessing and batched computations

optimise at a different level and could be used
simultaneously

CHEP 2003

CHEP 2023 You are here!

CHEP 2043 ?

https://indico.jlab.org/event/459/contributions/11581/
https://indico.jlab.org/event/459/contributions/11570/

Backup

29

Likelihood Parallelisation - Benchmarking

• This heat map displays a single line search
evaluation

• This line search was parallelised by components
• As such, every parallel task (y-axis) does one

component evaluation
• This explains the diagonal lines

−log L(θ |x) = − log
N

∏
i=0

pi(x |θ) N ≡ Ncomponents

= −
N

∑
i=0

log(pi(x |θ))

= − log(p1(x |θ)) − log(p2(x |θ)) − . . .

Pa
ra

lle
l t

as
k

Likelihood component

30

Gradient Parallelisation - Convergence

