. International Conference on Computing in High Energy & Nuclear Physics - May 8th, 2023
Nik|het

Build-a-Fit: RooFit Parallelisation
and Benchmarking Tools

Zef Wolffs (Nikhef, speaker), Patrick Bos (Netherlands eScience center),
Lydia Brenner (Nikhef), Wouter Verkerke (Nikhef), Ivo van Vulpen (Nikhef)

ROO T

S1d ([cente

Data Analysis Framework

NiEE\ef Background

e |n high energy physics, hypothesis testing is done by fitting likelihood models to datasets

e |n principle, parallelising this problem is not hard, remember the likelihood model

N N
—log L(0|x) = — long(Xi |0) = — Z log(p(x;10)) = — log(p(x,|0)) — log(p(x,|0)) — ...
i—0 i—0 R Vo S
parallel task 1 parallel task 2

e The evaluation of each event can be calculated fully independently and thus in parallel
e Even more so, likelihood models in high energy physics are generally also constructed
from independent components which could also be evaluated in parallel

NLL comp. 1

evaluated for the 1st event
NLL comp. 1
< NLL comp. 1

evaluated for the 2nd event

NLL

NLL comp. 1

suoljenjens
Juspuadapul

NLL comp. 2 _—"|evaluated for the 1st event

simplified likelihood model \eva.uat':(%%;‘i'.:‘:'zl,d _—

Niﬂimef Background

e |n practice though, models quickly grow quite convoluted, Higgs combination fits for
example incorporate hundreds of smaller likelihood models with varying structures and data
e This makes it hard to find any general parallelisation strategy with optimal load balancing

,/ RooAddpdf(

[X“SIK:I /’

iV

= i /" Rooabspat [/ RooAb_sPdf\)
Recent Higgs combination pdf computational graph (image courtesy of Nicolas Morange) > L N S

e The above likelihood models are those with the longest fit durations, currently taking hours
e The challenge at hand: Developing a multiprocessing strategy to significantly speed
up these complex fits while not compromising on robustness

Background

Nik[hef

e |n practice though, models quickly grow quite convoluted, Higgs combination fits for
example incorporate hundreds of smaller likelihood models with varying structures and data
e This makes it hard to find any general parallelisation strategy with optimal load balancing

e 2 = ol :
- C . st 'j'.;".. » %
N T :_“:‘L‘E":ihr, S i s AR wak
e = e RS W . ’
- - "To - ,‘6:"“! o :',"— '_. T =N \y
s e e B
e e e

- e

p— A —————
e —

Recent Higgs combinatic;n pdf compufational_éraph (image courtesy of Nicolas Morange)

/" RooAddPdf

[\deIKa /’

RooAbsPdf RooAbsPdf

P

e The above likelihood models are those with the longest fit durations, currently taking hours
e The challenge at hand: Developing a multiprocessing strategy to significantly speed

up these complex fits while not compromising on robustness

Ni@I\ef A General Parallel RooFit Framework

e A general parallel framework RooFit: :MultiProcess was written to serve as a

foundation for any RooFit parallelisation efforts
e Uses ZMQ for interprocess communication
e |[nterfaces with rest of RooFit through RooFit::MultiProcess: :Job

RooFit::MultiProcess knows how to |
interact with “Jdob” base classes '

Job.cxx

LikelihoodGradientWrapper.cxx #likelihood LikelihoodWrapper

| The rest of RooFit knows how
§ to interact with likelihoods, |
gradients, etc...

#likelihood #likelihood

+ evaluate task() =0

+fillGradient() = 0 + update_state() = 0 +evaluate() = 0

. : .

LikelihoodGradientJob.cxx T moee N LikelihoodJob.cxx
+ Any future
' parallel roofit !

IClasses that inherit from MultiProcess::Jobj |+ fiiGradient) parete DO |+ evaluate()
| thus interface multiprocessing code with 2 +uwedatesate) | =
| the rest of RooFit | |- evaluate_task(- evaluate_task()

+ update_state()

Ni@I\ef A General Parallel RooFit Framework

RooFit:: TestStatistics RooFit::MultiProcess
’ Calling Code
e [The UML sequence d |ag ram .. LikelihoodJob Master Process Queue Process Worker Processes
included on the right displays a j
simplified version of the ’ call to , ,
evaluate() ; '
RooFit: :MultiProcessing dslensliarsial >I
. add task(s)
execution flow L. g
tasks < dequeue request I
e Much more detailed UML diagrams flelse) ____ dequeue reject ____
of RooFit: :MultiProcessing [no task] § <j)
. . [task] :
can be found in previous CHEP - dequee acoept
proceedings [1]
task result
evaluation
---------- done

[1] Bos, EG Patrick, et al. "Faster RooFitting: Automated parallel calculation of collaborative statistical models." Journal of Physics: Conference Series. Vol. 1525. No. 1. IOP Publishing, 2020. 6

Ni@I\ef A General Parallel RooFit Framework

RooFit:: TestStatistics RooFit::MultiProcess

Calling Code

e.g. LikelihoodJob Master Process Queue Process Worker Processes

call to

et ettt e s P evaluate() update wd;)rker state >
; A parallel evaluation starts T PP >| I
! with some derived class of | T d t I

: - ¢ equeue reques

Job requesting parallel | tasks .
evaluation | | §

e ——————————rr] if/else) -....dequeue reject _____ >!

[no task]

[task] i

_..._dequeue accept ___ >

+ task
task result
evaluation
""""" d o'ﬁé"""""l

NiBI\ef A General Parallel RooFit Framework

| Master tells workers how |
{ to synchronise their state |

RooFit:: TestStatistics \' ' RooFit::MultiProcess

e.g(.;ililli(r;ﬂh%zgﬁob Master Process Queue Process Worker Processes
call to
et ettt e s P evaluate() update wé}rker state >
| A parallel evaluation starts ¢ PP >| I
! with some derived class of | T d t I
; . g equeue reques
Job requesting parallel | tasks .
evaluation | f §
e ——————————rr] if/else) -....dequeue reject _____ >!
[no task]
[task] i
dequeue accept
....................... >
+ task
task result
evaluation
""""" d 6ﬁé"""""l

NiBI\ef A General Parallel RooFit Framework

| Master tells workers how | | Master submits parallel |
| to synchronise their state| | tasks to queue |

RooFit:: TestStatistics 11 11 RooFit:MultiProcess

Calling Code

e.g. LikelihoodJob Master Process 1801 Queue Process Worker Processes

call to
evaluate()

{ with some derived class of | o
| Job requesting parallel | tasks
evaluation - |
e ————so——] if/else)

[no task]
[task] i

...Gequeue accept >

dequeue request

| A parallel evaluation starts ¢ add task(s) >| I

task result

evaluation I

Ni@I\ef A General Parallel RooFit Framework

aaertel workers how | | Master submits parallel
| to synchronise their state| | tasks to queue |

RooFit:: TestStatistics 11 11 RooFit:MultiProcess

Calling Code

e.g. LikelihoodJob Master Process 181 Queue Process Worker Processes

call to
evaluate()

' Workers request tasks |

{ with some derived class of | ot
. from queue in loop |

Job requesting parallel } tasks
evaluation { |
et ET—————————r——————— if/else)

[no task]
[task] i

...Gequeue accept >

dequeue request

| A parallel evaluation starts ¢ add task(s) >| I

task result

evaluation I

10

Ni@I\ef A General Parallel RooFit Framework

A parallel evaluation starts ¢

{ with some derived class of |
{ Job requesting parallel |
evaluation ,{

| Master tells workers how | | Master submits parallel |
| to synchronise their state| | tasks to queue |

RooFit:: TestStatistics

Calling Code

e.g. LikelihoodJob Master Process

call to
evaluate()

i i RooFit::MultiProcess

Queue Process Worker Processes

for all
tasks

update worker state >I

add task(s) >l

dequeue request

if/else)

[no task]

[task]

task result

evaluation I

' Workers request tasks |

. from queue in loop |

] Queue assigns task with |

(highest priority if available|

11

Ni@I\ef A General Parallel RooFit Framework

A parallel evaluation starts ¢

{ with some derived class of |
{ Job requesting parallel |
evaluation ,{

| Master tells workers how | | Master submits parallel |
{ to synchronise their state | B ‘tasks to queue

RooFit:: TestStatistics

Calling Code

e.g. LikelihoodJob Master Process

call to
evaluate()

i RooFit::MultiProcess

Queue Process Worker Processes

for all
tasks

update worker state >I

add task(s) >l

dequeue request

if/else)

[no task]

[task]

task result

evaluation I

IWorkers execute assigned |

task and send result to |

' Workers request tasks |

. from queue in loop |

] Queue assigns task with |

(highest priority if available|

12

Ni@I\ef A General Parallel RooFit Framework

| Master tells workers how | | Master submits parallel |
{ to synchronise their state | B ‘tasks to queue

RooFit:: TestStatistics i1 1] RooFit:MultiProcess

Calling Code

e.g. LikelihoodJob Master Process 181 Queue Process Worker Processes

call to
evaluate()

| A parallel evaluation starts ¢ add task(s) >| I

{ with some derived class of | o
| Job requesting parallel | tasks
evaluation { |

e ———————— if/else)

| Workers request tasks |
. from queue in loop |

dequeue request

[no task]

[task]

] Queue assigns task with |

| The master process has |
| {highest priority if available

| received all tasks and |
{ evaluation is done, restof e | | |

| - st eees oy g|uation

| RooFit proceeds as usual [~ B< - dore |

task result

IWorkers execute assigned
= task and send resultto |

13

Ni@I‘ef Task Ordering Optimisati()n

e The ordering of parallel tasks can significantly impact the total runtime of a parallel program

e Suboptimal ordering in cases where task duration varies strongly can cause processes to
idle

wem Worker:eval_task

I S A N I AL T2cterioradient
worker 14 1 | I o s (D
worker 13 - I I e .
worker 12 - I A) O N (e
worker 11 1 | I I o
worker 10 - I A N N N O ORI

worker 9 T v o e

master
worker 15 -

v

0]

S worker 8 - I I I e e

S worker 7 - I) A I D
worker 6 - I N N O A
worker 5 4 N s o v AT
worker 4 - I I O
worker 3 5 N I [N (N O T i L
worker 2 4 | e I I T eI e |
worker 1 5 I O o k

worker 0 1

7 T[T][(]| [.

. . - - - ' i When ending with the |
i smallest jobs workers do not;
| have to wait for each other |

42.6 42.8 43.0 43.2 43.4 43.6 43.8
s since start

e RooFit::MultiProcessing implements custom task ordering

e Can be dynamically updated with timing information as the variable metric steps progress

e Reduces gradient calculation time by more than 5% for 10 workers “for free”
14

Ni@I‘ef Task Ordering Optimisati()n

e The ordering of parallel tasks can significantly impact the total runtime of a parallel program

e Suboptimal ordering in cases where task duration varies strongly can cause processes to
idle

wem Worker:eval_task

I S A N I AL T2cterioradient
worker 14 1 | I o s (D
worker 13 - I I e .
worker 12 - I A) O N (e
worker 11 - ___I_II-IIIIIIIIIIIIIIIIIIII
worker 10 - I A N (N

worker 9 - : > T l| |||

orker - But what if this task | |||E|'u'||-|] |'|'|

worker 6 -]

| 2 | T T
worers- - were here instead? gy i
worker 4 -

worker 3 - | I N Nt
worker 2 - _._-.I.l |.I l.

worker14{ I
worker 0 - :_ S I A m

42.6 42.8 43.0 43 2 43.4 43.6 43.8 44.0
s since start

master
worker 15 -

process

e RooFit::MultiProcessing implements custom task ordering

e Can be dynamically updated with timing information as the variable metric steps progress

e Reduces gradient calculation time by more than 5% for 10 workers “for free”
15

Nik|het

Minimisation with Gradient and
Likelihood Parallelisation

Ni@I\ef A Brief Reminder on Likelihood Minimisation

e The principle behind most minimisation routines consists of
X;11 = X; + Ap such that f(x;11) < f(x;)

until some stopping condition is satisfied

Gradient
Partial
derivative

Isearch

Partial
derivative

e For Minuit2, the minimisation routine that RooFit uses, the
following holds

{ Execution time for |
| partial derivatives
| may vary strongly |

Gradient

e p is the step direction, determined by the variable metric

method, the most expensive part of which is the Searen
calculation of the gradient (O(N) likelihood evals)
e Jis the step size in the given direction, determined by a 5

line search step, the most expensive part of which is the
evaluation of the full likelihood (O(3) likelihood evals)

17

NiBI\ef Gradient Parallelisation

e RooFit::TestStatistics splits the gradient
into individual partial derivative tasks

e The task (partial derivatives) sizes may vary
strongly due to
e Most components only being dependent on
subset of parameters, thus not all components
need evaluation for every partial derivative
e Varying likelihood component calculation
complexity

Gradient

searc

Gradient

Isearc

e Dynamic load balancing is crucial and is currently
addressed by
e \Work stealing algorithm
e Task ordering by duration

Gradient

18

NiBEef Gradient Parallelisation - Benchmaking

e The heat map on the right shows a single f

gradient calculation, distributed across
multiple workers
e This particular gradient took place when \

fittinga H — WW workspace

e Remember the gradient:
()XINLL(comp.Z) + 0, NLL(comp.2) + . ..) y
)+ d, NLL(comp.2) + ...

ONLL
VNLL = = 0, NLL(comp.1
X

 The x-axis indicates the likelihood
component

e [he y-axis indicates a parallel task, in this
case split by partial derivatives

NiBEef Gradient Parallelisaion - Benchmaking

* Not all parameters present in all likelihood

components

e |[f this is the case, no evaluation is
necessary and the result is returned
Immediately

e EXxplains the black regions in heatmap

e Benchmarking tools now available in RooFit
e TimingAnalysis argument in
RooMinimizer enables profiling

e RooFit::MultiProcess: :HeatmapAna

lyzer () to create a heatmap

i H 3
' i i i H

20

Nigﬁef Gradient Parallelisaion - Benchmaking

e Not all parameters present in all likelihood

components
e |f this is the case, no evaluation is

necessary and the result is returned
Immediately these parameters

 Explains the black regions in heatmap appae:{n‘;rl‘;y in

component!

e Benchmarking tools now available in RooFit
e TimingAnalysis argument in
RooMinimizer enables profiling
e RooFi1t::MultiProcess: :HeatmapAna

lyzer () to create a heatmap

| ||| | Ukellhood component | | |

Ni@I\ef Likelihood Parallelisation

e |In some cases, evaluation of the likelihood can be the bottleneck, for example in the
calculation of the line search step
e During the line search step all parameters are typically changed two or three times,
requiring an evaluation of all components of the likelihood
e With the gradient sufficiently optimised, this can become the bottleneck for an entire fit

Parallel N=1 Parallel N=16

e RooFit::TestStatistics has two options for splitting likelihood evaluation into tasks

e By events: each task is defined by an event range to execute
e By components: each task is defined by a set of components to execute

22

Nik|het

Results

<

-
)j(
D
-4

K

Scaling of Line Search and Gradient

0,65

walltime [s]

0,33

0,16

0,08

0,04

0,02

line search scaling

12 14 16 18

8 10

4 6

walltime [s]

—&®—parallel —#—ideal serial

(0.0]
o

IS
o

20

10

x1.9

gradient scaling

x3.4

4

—&®—parallel —#—ideal

x5.7

6 8 10

12

serial

14

x6.9

16

18

e Used recent Higgs combination workspace produced for 10 year Higgs anniversary paper [2]
e The line search is work in progress, gradient can be used out of the box in ROOT 6.28
e For the line search timings H — yy was removed from the combination workspace

[2] The ATLAS Collaboration. A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery. Nature 607, 52-59 (2022). https://doi.org/10.1038/s41586-022-04893-w

24

Ni@I\ef Full Higgs Combination Fit Scaling

16 workers is 4.6, including all serial components

e This brings the walltime down from 2 hours and 12
minutes to 29 minutes

e At that point, nearly half of the walltime is spent in
serial parts

e With line search parallelisation fully integrated we can
reasonably expect to reach a total speedup of 5.3
e \Would bring walltime down to 25 minutes

Serial Old Parallel N=1 Parallel N=2 Parallel N=4
roofit_setup = migrad_seed roofit_setup = migrad_seed roofit_setup = migrad_seed roofit_setup ® migrad_seed
migrad_gradient = migrad_descent migrad_gradient = migrad_descent migrad_gradient = migrad_descent migrad_gradient = migrad_descent

e \With gradient parallelisation the achieved speedup with

Total Fit Time scaling

8000,0
7000,0
6000,0
5000,0
4000,0
3000,0

2000,0

1000,0

0,0
0 2 & 6 8 10 12 14 16 18

em@ums Total Time e oo oo perf.grad.scal serial omponents X OldSerialTot

Parallel N=16
Parallel N=8 Parallel N=16 (assuming Isearch scaling)

-4

roofit_setup = migrad_seed roofit_setup = migrad_seed

>

v

roofit_setup = migrad_seed

. . . iorad dient iorad d t
migrad_gradient = migrad_descent migrad_gradient = migrad_descen migrad gradient » migrad. descent 25

Nik|het

Conclusions

Ni@I\ef Conclusions

RooFit

A general purpose tool kit for data modeling

* Higgs combination fits and the future hi-lumi LHC pose CHEP 2003 ~ - e
significant challenges to high energy physics analysis software

e RooFit addresses these challenges through improvements in
multiple directions
e Automatic differentiation (Garima’s talk!)
e Batched computations and vectorisation (Jonas’ talk!) CHEP 2023 You are here!
e Multiprocessing

e (Consolidation of these efforts is an important next step on the

agenda
e For example, multiprocessing and batched computations w chatpoopy
optimise at a different level and could be used CHEP 204372 - jj
simultaneously -,
| % -

77

https://indico.jlab.org/event/459/contributions/11581/
https://indico.jlab.org/event/459/contributions/11570/

Nik|het

Backup

NiE@ef Likelihood Parallelisation - Benchmﬁarking

e This heat map displays a single line search
evaluation

N
—log L(O|x) = — longi(Xlﬁ) N=N,
i=0

N
= —) log(p(x|0))
=0

= — log(p,(x|0)) — log(p,(x|0)) — ...

e This line search was parallelised by components
e As such, every parallel task (y-axis) does one
component evaluation
e This explains the diagonal lines

Parallel task

| Likelihood component

\

1

kihef

100

10

0.1

0.01

0.001

0.0001

Gradient Parallelisation - Convergence

Hcomb workspace (120 VM steps, Npar=3105, Ncomp=334)

-log(L) vs VariableMetric step

(L offset such that minimum is by definition at 0.001)

EDM vs VariableMetric step

100

10

0 40 60 80 100 120 140

0.1

0.01

0.001

Convergence

99% of the 3105 parameters agree within 0.1% of estimated uncertainty
All parameters agree within 1% of the estimate uncertainty

140

30

