The QuantOm Event-Level Inference Framework

Daniel Lersch for the QuantOm Collaboration

Jefferson Lab

May 11, 2023

Study Quark-Gluon Structure via Scattering Events

- Goal: Understand Quark-Gluon system (e.g. explain nucleon mass or spin)
- Approach: Conduct scattering experiments ⇒ Extract Quantum Correlation Functions (QCFs)

From Histograms to Event-Level Analysis

Event-Level Analysis

Combine:

- Theory
- Experiment
- Math + Statistics
- AI / ML
- High performance computing

From Histograms to Event-Level Analysis

The **QUA**ntum chromodynamics **N**uclear **TOM**ography Collaboration (**QuantOm**)

• Part of the Scientific Discovery through Advanced Computing (SciDAC) program

The **QUA**ntum chromodynamics **N**uclear **TOM**ography Collaboration (**QuantOm**)

- Part of the Scientific Discovery through Advanced Computing (SciDAC) program
- Interdisciplinary research
 - Applied mathematics
 - Computer and Data science
 - Theoretical and experimental nuclear physics
 - High performance computing

The **QUA**ntum chromodynamics **N**uclear **TOM**ography Collaboration (**QuantOm**)

- Part of the Scientific Discovery through Advanced Computing (SciDAC) program
- Interdisciplinary research
 - Applied mathematics
 - Computer and Data science
 - Theoretical and experimental nuclear physics
 - High performance computing
- Utilize various research institutions
 - Jefferson Lab
 - Argonne National Laboratory
 - Virginia Tech
 - Old Dominion University

Daniel Lersch (Jefferson Lab)	CHEP23	May 11, 2023
-------------------------------	--------	--------------

Daniel Lersch (Jefferson Lab)	CHEP23	May 11, 2023
-------------------------------	--------	--------------

Daniel Lersch (Jefferson Lab)	CHEP23	
-------------------------------	--------	--

Daniel Lersch (Jefferson Lab)	CHEP23	May 11, 2023	6/1
-------------------------------	--------	--------------	-----

Daniel Lersch (Jefferson Lab)	CHEP23	May 11, 2023	6/11
-------------------------------	--------	--------------	------

Features of the Workflow

- Operates on the event-level
 - No information lost in histograming process
 - Access to entire feature space
 - Perform real-time analysis
 - Identify rare events
- Flexible
 - Change / update / add individual modules
 - Customize entire pipeline
- Fit multiple experiments simultaneously
 - Combine available data (more statistics / better feature space coverage)
 - Each experiment has its own dedicated module

Loop Closure Test

- Would like to...
 - ... understand the workflow
 - ... evaluate the performance
 - ... identify potential problems

Loop Closure Test

- Would like to...
 - ... understand the workflow
 - ... evaluate the performance
 - ... identify potential problems
- Run tests on toy data set
 - Known "QCF" \Rightarrow (what we are trying to find in a real analysis, e.g. PDF)
 - Simplified theory, sampling and experiment modules
 - Two observables \Rightarrow (mimic what is usually histogramed, e.g. cross sections)
 - **Goal:** Find the QCF (i.e. underlying physics) by analyzing the observables

Loop Closure Test

- Would like to...
 - ... understand the workflow
 - ... evaluate the performance
 - ... identify potential problems
- Run tests on toy data set
 - Known "QCF" \Rightarrow (what we are trying to find in a real analysis, e.g. PDF)
 - Simplified theory, sampling and experiment modules
 - Two observables \Rightarrow (mimic what is usually histogramed, e.g. cross sections)
 - **Goal:** Find the QCF (i.e. underlying physics) by analyzing the observables
- Use GAN workflow
 - 1. Generator predicts parameters
 - 2. Parameters are translated to fake events with two observables
 - 3. Discriminator tries to distinguish between fake and toy data events

First Results from Loop Closure Test GAN Convergence

- Trained one GAN workflow on toy data set
- Used best guess settings for first tests
- Ideally
 - Generator and discriminator losses converge to same value
 - Discriminator accuracy is 0.5 for fake and real events

Daniel Lersch (Jefferson Lab)

CHEP23

First Results from Loop Closure Test GAN Predictions

• Left: Reproduce observables presented in toy data

• Right: True "QCF" and GAN prediction

- Workflow to extract QCFs on the event level
 - Modular
 - Make use of all information available: Theory + Experiment
 - Utilize GAN for Bayesian interference

- Workflow to extract QCFs on the event level
 - Modular
 - Make use of all information available: Theory + Experiment
 - Utilize GAN for Bayesian interference
- Analysis of toy data set
 - Test workflow performance
 - Extracted "QCF" from "measured" observable
 - First results are promising

- Workflow to extract QCFs on the event level
 - Modular
 - Make use of all information available: Theory + Experiment
 - Utilize GAN for Bayesian interference
- Analysis of toy data set
 - Test workflow performance
 - Extracted "QCF" from "measured" observable
 - First results are promising
- Workflow is still in development phase
 - Uncertainty quantification (Statistical uncertainty vs. Neural net uncertainty vs. Module uncertainty,...)
 - Scalability (Distributed training with 2,4,8,... GPUs)
 - Neural network independent workflow developed in parallel
 - Hyper parameter optimization (HPO)
 - Additional convergence criteria (e.g. loss landscape)
 - Identify bugs and bottle-necks in workflow

- Workflow to extract QCFs on the event level
 - Modular
 - Make use of all information available: Theory + Experiment
 - Utilize GAN for Bayesian interference
- Analysis of toy data set
 - Test workflow performance
 - Extracted "QCF" from "measured" observable
 - First results are promising
- Workflow is still in development phase
 - Uncertainty quantification (Statistical uncertainty vs. Neural net uncertainty vs. Module uncertainty,..)
 - Scalability (Distributed training with 2,4,8,... GPUs)
 - Neural network independent workflow developed in parallel
 - Hyper parameter optimization (HPO)
 - Additional convergence criteria (e.g. loss landscape)
 - Identify bugs and bottle-necks in workflow
- Analyze measured data from experiment
 - How to handle possible background in data ?
 - $(\Rightarrow$ Background studies on toy data currently ongoing)
 - ► Use "realistic" experiment module (⇒ ML surrogate)