A multidimensional, event-by-event, statistical weighting procedure for signal to background separation

$26^{\text {th }}$ International Conference CHEP - Norfolk, Va
Physics Analysis Tools

Zachary Baldwin, May 8, 2023 for the GlueX Collaboration and

Carnegie Mellon University

- Separating regions of signal from background

Solution? \longrightarrow
Completely ignore the implications of keeping the background and just selecting around the region of interest

- Separating regions of signal from background

Solution? \longrightarrow
 Completely ignore the implications of keeping the background and just selecting around the region of interest

Decision Trees

- Separating regions of signal from background

$$
\text { Solution? } \longrightarrow \begin{gathered}
\text { Completely ignore the implications of keeping } \\
\text { the background and just selecting around the } \\
\text { region of interest }
\end{gathered}
$$

Take for instance the background underneath $\gamma p \rightarrow p \eta$ (or $\gamma p \rightarrow p \omega$). Other production mechanisms can produce the same final state so can not differentiate between pure signal events using selection criteria therefore is
irreducible
PDG values

Take for instance the background underneath $\gamma p \rightarrow p \eta$ (or $\gamma p \rightarrow p \omega$). Other production mechanisms can produce the same final state so can not differentiate between pure signal events using selection criteria therefore is irreducible

PDG values

$$
\Phi_{\text {Subtracted }}=\Phi_{\text {Signal }}-\frac{A_{\text {Signal }}}{A_{\text {Left }}+A_{\text {Right }}}\left(\Phi_{\text {Left }}+\Phi_{\text {Right }}\right)
$$

Developed during analysis of $\eta^{(1)}$ and ω photo-production in

Generalizes sideband subtraction method to higher dimensions (no binning required)

[^0]
What are K-Nearest Neighbors?

- Algorithm to look at data surrounding specific target data point, in order to predict what category that data should be

What category should this event belong to?

What are K-Nearest Neighbors?

- Algorithm to look at data surrounding specific target data point, in order to predict what category that data should be

What category should this event belong to?

Measure distance to all points

What are K-Nearest Neighbors?

- Algorithm to look at data surrounding specific target data point, in order to predict what category that data should be

What category should this event belong to?

Measure distance to all points

Find the neighbors

What are K-Nearest Neighbors?

- Algorithm to look at data surrounding specific target data point, in order to predict what category that data should be

What category should this event belong to?

Measure distance to all points

Find the neighbors

What are K-Nearest Neighbors?

- Algorithm to look at data surrounding specific target data point, in order to predict what category that data should be

Measure distance to all points

Vote on most nearest neighbor categories (based on k)
Note: change k, could change the outcome

Assumptions

- The data should be in angles, masses, etc..
- Distributions of signal and background must be known in a subset of coordinates
- Signal and background do not vary rapidly in non-reference coordinates

Definitions

$\vec{\xi} \longrightarrow$ Coordinates
$\xi_{r e f} \longrightarrow$ Reference coordinate
$S(\xi) \longrightarrow$ Signal function of coordinates
$B(\xi) \longrightarrow$ Background function of coordinates

Assumptions

- The data should be in angles, masses, etc..
- Distributions of signal and background must be known in a subset of coordinates
- Signal and background do not vary rapidly in non-reference coordinates

Definitions

$\vec{\xi} \longrightarrow$ Coordinates
$\xi_{\text {ref }} \longrightarrow$ Reference coordinate
$S(\xi) \longrightarrow$ Signal function of coordinates
$B(\xi) \longrightarrow$ Background function of coordinates

Normalized Euclidean Distance

- Need to assign a distance metric to phase space to determine how close two events are in non-reference coordinates

$R_{k}=$ maximal distance between any two events ξ_{k}
- For each event, a computation of the distance between all other events in data is performed to obtain the nearest neighbor events
- Once these events are obtained, they are fit to gather fit parameters, $\vec{\alpha}$ to

$$
\begin{aligned}
& F\left(\xi_{r}, \vec{\alpha}\right)=\frac{F_{s}\left(\xi_{r}, \vec{\alpha}\right)+F_{b}\left(\xi_{r}, \vec{\alpha}\right)}{\int\left[F_{s}\left(\xi_{r}, \vec{\alpha}\right)+F_{b}\left(\xi_{r}, \vec{\alpha}\right)\right]} \\
& \begin{array}{l}
F_{s}\left(\xi_{r}, \vec{\alpha}\right) \\
\text { (Signal) }
\end{array} \longrightarrow \int F_{s}\left(\xi_{r}, \vec{\alpha}\right) d \xi_{r}=n_{s i g}
\end{aligned}
$$

$$
\underset{\text { Background) }}{F_{b}\left(\xi_{r}, \vec{\alpha}\right)} \int F_{b}\left(\xi_{r}, \vec{\alpha}\right) d \xi_{r}=n_{\text {backgrond }}
$$

$$
Q_{i}=\frac{F_{s}\left(\xi_{r}^{i}, \hat{\alpha}_{i}\right)}{F_{s}\left(\xi_{r}^{i}, \hat{\alpha}_{i}\right)+F_{b}\left(\xi_{r}^{i}, \hat{\alpha}_{i}\right)}
$$

- For each event, a computation of the distance between all other events in data is performed to obtain the nearest neighbor events
- Once these events are obtained, they are fit to gather fit parameters, $\vec{\alpha}$ to

$$
\begin{aligned}
& F\left(\xi_{r}, \vec{\alpha}\right)=\frac{F_{s}\left(\xi_{r}, \vec{\alpha}\right)+F_{b}\left(\xi_{r}, \vec{\alpha}\right)}{\int\left[F_{s}\left(\xi_{r}, \vec{\alpha}\right)+F_{b}\left(\xi_{r}, \vec{\alpha}\right)\right]} \\
& \underset{\text { (Signal) }}{F_{s}\left(\xi_{r}, \vec{\alpha}\right)} \longrightarrow \int F_{s}\left(\xi_{r}, \vec{\alpha}\right) d \xi_{r}=n_{s i g} \\
& \underset{\substack{\text { Background) }}}{F_{b}\left(\xi_{r}, \vec{\alpha}\right)} \int F_{b}\left(\xi_{r}, \vec{\alpha}\right) d \xi_{r}=n_{\text {backgrond }}
\end{aligned}
$$

$$
Q_{i}=\frac{F_{s}\left(\xi_{r}^{i}, \hat{\alpha}_{i}\right)}{F_{s}\left(\xi_{r}^{i}, \hat{\alpha}_{i}\right)+F_{b}\left(\xi_{r}^{i}, \hat{\alpha}_{i}\right)}
$$

Introduction/Methodology/Application/Conclusion
Quality Factor Description w/ Toy Monte Carlo
Signal + Background Toy Monte Carlo

$$
\vec{\xi}_{r e f}=m_{3 \pi}
$$

$$
F_{s}\left(m_{3 \pi}, \vec{\alpha}\right)=s \cdot V\left(m_{3 \pi}, m_{\omega}, \Gamma_{\omega}, \sigma\right)
$$

$$
F_{b}\left(m_{3 \pi}, \vec{\alpha}\right)=b_{1} \cdot m_{3 \pi}+b_{0}
$$

- For each event, a computation of the distance between all other events in data is performed to obtain the nearest neighbor events
- Once these events are obtained, they are fit to gather fit parameters, $\vec{\alpha}$ to

$$
\begin{aligned}
& F\left(\xi_{r}, \vec{\alpha}\right)=\frac{F_{s}\left(\xi_{r}, \vec{\alpha}\right)+F_{b}\left(\xi_{r}, \vec{\alpha}\right)}{\int\left[F_{s}\left(\xi_{r}, \vec{\alpha}\right)+F_{b}\left(\xi_{r}, \vec{\alpha}\right)\right]} \\
& \underset{\text { (Signal) }}{F_{s}\left(\xi_{r}, \vec{\alpha}\right)} \longrightarrow \int F_{s}\left(\xi_{r}, \vec{\alpha}\right) d \xi_{r}=n_{s i g} \\
& \underset{\text { ackground) }}{F_{b}\left(\xi_{r}, \vec{\alpha}\right)} \int F_{b}\left(\xi_{r}, \vec{\alpha}\right) d \xi_{r}=n_{\text {backgrond }}
\end{aligned}
$$

$$
Q_{i}=\frac{F_{s}\left(\xi_{r}^{i}, \hat{\alpha}_{i}\right)}{F_{s}\left(\xi_{r}^{i}, \hat{\alpha}_{i}\right)+F_{b}\left(\xi_{r}^{i}, \hat{\alpha}_{i}\right)}
$$

Introduction/Methodology/Application/Conclusion
Quality Factor Description w/ Toy Monte Carlo
Signal + Background Toy Monte Carlo

$$
\begin{gathered}
\vec{\xi}_{r e f}=m_{3 \pi} \\
F_{s}\left(m_{3 \pi}, \vec{\alpha}\right)=s \cdot V\left(m_{3 \pi}, m_{\omega}, \Gamma_{\omega}, \sigma\right) \\
F_{b}\left(m_{3 \pi}, \vec{\alpha}\right)=b_{1} \cdot m_{3 \pi}+b_{0}
\end{gathered}
$$

The main goal of the Glue X experiment is understand the underlying nature of confinement within QCD by mapping the spectrum of light quark states With an emphasis on searching for evidence of a non- $q \bar{q}$ state (i.e. new QCD states)
tes)

Introduction/Methodology/Application/Conclusion
GlueX Experiment

Forward Calorimeter

Normal to Decay Plane

Diagram showing the $\gamma p \rightarrow \pi^{0} \eta p$ decay

Introduction/Methodology/Application/Conclusion
Coordinates In Data

Reference Coordinate $\left(\xi_{r}\right)$ $m(\eta)$

Phase Space Coordinates $\left(\xi_{k}\right)$

$$
\Phi_{\gamma} \rightarrow \text { Polarization }
$$

$$
\begin{array}{l|l}
\cos \left(\vartheta_{G J}\right) \mid \phi_{G J} \rightarrow \eta & \cos \left(\vartheta_{H X}^{\eta^{(1)}}\right) \mid \phi_{H X}^{\eta^{()}} \\
\cos \left(\vartheta_{C O M}\right) \rightarrow \eta_{D E C A Y} \\
\cos \left(\vartheta_{H X}^{\omega}\right) \mid \phi_{H X}^{\omega} & \rightarrow \omega_{D E C A Y}
\end{array}
$$

(Shown in backup slides)

Reference Coordinate (ξ_{r})

$$
m(\eta)
$$

Phase Space Coordinates $\left(\xi_{k}\right)$
$\Phi_{\gamma} \rightarrow$ Polarization

$$
\begin{array}{l|l}
\cos \left(\vartheta_{G J}\right) \mid \phi_{G J} \rightarrow \eta \\
\cos \left(\vartheta_{C O M}\right) \rightarrow \pi^{0} \eta
\end{array} \quad \begin{array}{ll}
\cos \left(\vartheta_{H X}^{\eta^{()}}\right) \mid \phi_{H X}^{\eta^{()}} & \rightarrow \eta_{D E C A Y} \\
\cos \left(\vartheta_{H X}^{\omega}\right) \mid \phi_{H X}^{\omega} \rightarrow \omega_{D E C A Y}
\end{array}
$$

(Shown in backup slides)
Calculations on data is a very computationally expensive technique:

- Searching for nearest neighbors
- Performing unbinned Maximum

Likelihood Estimation

Individual Fits

GlueX Data

Signal Fit $\longrightarrow G(x, \mu, \sigma)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left[-\left(\frac{(m-\mu)^{2}}{2 \sigma^{2}}\right)\right]$
Bkgd Fit $\longrightarrow b_{\nu, n}(x)\binom{\nu}{n} x^{\nu}(1-x)^{n-\nu}$

Candidate has

50\% probability it "originated" from an η | 0.567 |
| ---: |
| Q-value |

- Neighbors -Total Fit -Bkgd Fit

Candidate is definitely not
an η event

- Event - Signal Fit

会
$14 E=$
$12 E$
$10 E$
$2 E$
$6 E$
$6 E$
$4 E$
$2 E$
0.
0.51 Peetiminary

- Binning is not required
- Can weight the log likelihood when performing unbinned maximum likelihood fits
-Therefore background subtraction carried out automatically
- Unlike other procedures no a priori knowledge of signal or background required

Cons

- Computationally expensive
- Potential inability to deal with correlated coordinates

Conclusion

- The Quality Factor procedure is proven to separate signal from non-interfering backgrounds
(on an event by event basis)
- Weights obtained from this procedure can be utilized in other analysis studies (Cross-sections, PWA's, etc.)

C A Meyer, M Williams, M Bellis. Multivariate side-band subtraction using probabilistic event weights. Instrumentation, 2009

GlueX acknowledges the support of several funding agencies and computing facilities
gluex.org/thanks

BACKUP SLIDES

Q factor eliminates most $\omega \rightarrow \pi^{0} \pi^{+} \pi^{-}$ background but not all

η Decay Frame

Resonance M frame

$$
\begin{gathered}
\vec{y}=\frac{\vec{k} \times \vec{z}_{H X}}{\left|\vec{k} \times \vec{z}_{H X}\right|} \\
\vec{x}=\vec{y} \times \vec{z} \\
\vec{k} \text { vector }
\end{gathered}
$$

in beam direction
We see both $\cos (\vartheta)_{H X}$ are not flat as expected and have "wings" at edges

[^0]: What is the procedure?
 Utilizes k-nearest neighbor technique to assign each signal candidate a

 Quality (Q) Factor
 (i.e. the probability that the
 event originates from desired signal)

