
https://root.cern

ROOT
Data Analysis Framework

Improving ROOT I/O
Performance for Analysis

CHEP 2023, Norfolk, U.S.
May 8, 2023

Canal, Philippe (FNAL) Blomer, Jakob (CERN) Naumann, Axel (CERN)

https://root.cern/

Introduction

§ Using 100s of cores (and threads)
brings a slew of new challenges.

§ Will describe a series of improvements
accelerating by order of magnitude
§ Reading via RDataFrame
§ Writing using TBufferMerger

§ Including several re-usable lessons learned

2May 8, 2023 ROOT I/O --- CHEP 2023

Many of the improvements
are thanks to

Josh BenDavid & Chris Jones
Picture From

newtechnorthwest

This Photo by Unknown Author is licensed under CC BY

https://www.newtechnorthwest.com/the-top-5-tips-for-saying-more-than-just-thanks-in-a-note/
https://fabiusmaximus.com/2015/02/04/economics-secular-stagnation-78028/
https://creativecommons.org/licenses/by/3.0/

Amdahl’s law is harsh at 256 threads

§ Result on a smallish CMS analysis test with 256 threads:
§ 78x speedup in elapsed time

§ Reduces wall time from 25 minutes to 19 seconds

§ Increases CPU usage from 400% to 4000%.

§ Change in a single function (TBufferFile::ReadClassBuffer)
§ Use Read and Write part of global Read/Write lock

§ Reduce critical section (write lock) down to the (rare) one time initialization

§ Keep rest of the hotspot under ‘only’ the read lock.

3May 8, 2023 ROOT I/O --- CHEP 2023

https://github.com/root-project/root/pull/7105

Atomics are easy, right?

§ Not so fast. Still need an (implicit) synchronization.
§ 2.2x improvement (40M obj write on 32 threads: 322s down to 141s)

§ Avoid multiple calls to std::atomic::load

§ Use more relaxed memory order
§ Switched from memory_order_seq_cst (sequentially-consistent ordering, default) to

std::memory_order_relaxed

4May 8, 2023 ROOT I/O --- CHEP 2023

auto value = fAtomic.load();
if (!value)

… some initialization …
return value ? value : kDefault;

if(!fIsInit.load(std::memory_order_relaxed))
{

std::lock_guard(mutex);
if (!fIsInit.load())

// Actual one-time initialization
}

Relaxed operation: no synchronization or
ordering constraints imposed on other reads or
writes, only this operation's atomicity is guaranteed.

Works here as spurious execution of ”then” will be
harmless thanks to lock and recheck.

https://en.cppreference.com/w/cpp/atomic/memory_order
https://en.cppreference.com/w/cpp/atomic/memory_order
https://en.cppreference.com/w/cpp/atomic/memory_order

Making multiple line static initialization thread safe

§ Dangerous § Thread safe

May 8, 2023 ROOT I/O --- CHEP 2023 5

static std::vector<size_t> lengths{ []()
{
std::vector<size_t> create_lengths;
for (...) {
create_lengths.push_back(...);

}
return create_lengths;

}() };
return lengths;

static bool isinit = false;
static std::vector<size_t> lengths;
if (!isinit) {
for (...) {
lengths.push_back(...);

}
isinit = true;

}
return lengths;

Speeding-up TFile

§ 8x reduction in elapsed time in a RDF benchmark reading one column from
4000 files with 1M entries and using 256 threads
§ New TFile::Open option to skip global registration, RDF uses this option by default
§ TFile::Open no longer reprocess identical TStreamerInfo.

§ Another 2x by improving TFile::Open’s plugin mechanism
§ Increase pre-calculation (pay upfront, avoid synchronization later)
§ Increase caching to avoid calls to locking checks
§ Use local mutex rather than global lock (required attention to avoid dead lock)

§ Yet another 2x Skip registration of TFile’s UUIDs
§ Breaks the very rare case where a TRef points

to the TFile object
§ Cpu usage from 1557% to 14271%

6May 8, 2023 ROOT I/O --- CHEP 2023

2x in time
9x in CPU usage

Bottleneck switches from
mutex to spin locks

https://github.com/root-project/root/pull/11631
https://github.com/root-project/root/pull/10318

Additional speedups

§ 9x in a realistic RDataFrame CMS based example with many branches
§ Disable garbage collector for TBranch within RDF

§ 7% speedup in a medium sized test filling histograms from CMS NanoAOD
with RDF and 256 threads.
§ New (optional) TBB-based internal counter for ROOT main to Recursive Read/Write Lock

7May 8, 2023 ROOT I/O --- CHEP 2023

https://github.com/root-project/root/pull/10729
https://github.com/root-project/root/pull/10729
https://github.com/root-project/root/pull/7260

It gets complicated

§ TClassTable: fixed data race between dlopen and other uses
§ Opening a library register what classes it contains

§ If done from multiple threads, it fills the same containers at the ‘same time’

§ Required fine grained lock because:

§ dlopen itself take a lock so there is risk of dead locks

§ User might hold ROOT global lock

§ Required to only include elementary actions

§ Even simple ‘error handling function’ can both take the global lock and recursively call
TClassTable.

§ gDirectory is a thread local variable that points to a TFile that can be
deleted by another thread
§ Requires extremely challenging intercommunication between threads.

8May 8, 2023 ROOT I/O --- CHEP 2023

This Photo by Unknown Author is
licensed under CC BY

https://github.com/root-project/root/pull/12553
https://github.com/root-project/root/pull/11908
https://courses.lumenlearning.com/waymaker-psychology/chapter/outcome-thinking-and-problem-solving/
https://creativecommons.org/licenses/by/3.0/

Multiple writer into a single file

9

Final File

Client / Thread

Client / Thread

Client / Thread

TBufferMerger / Server

TBufferMerger

10

Worker Thread

Data
Buffer

Worker Thread
Worker Thread

Worker Thread

Data
Buffer

Data
Buffer

Data
Buffer

Data
Buffer

Merge()

Disk

Data Queue Data
Buffer

TBufferMerger

Worker Thread

Data
Buffer

Write()

Write()

Write()

Write()

Write()

TBufferMerger when
per-thread-time < merging-time*threads

11

Worker Thread

Data
Buffer

Worker Thread
Worker Thread

Worker Thread

Data
Buffer

Data
Buffer

Data
Buffer

Data
Buffer

Merge()

Disk

Data
Buffer

Data Queue Data
Buffer

TBufferMerger

Data
BufferData

BufferWorker Thread

Data
Buffer

Write()

Write()

Write()

Write()

Write()

Taming the flood

§ Problem might appear in case of fast data producer and
very high thread count (and high branch count)

§ Make the merging step as fast as possible:
§ Keep the in-memory TTree alive avoid compression and streaming back and forth
§ Optimize the main code paths
§ Trade off crash recovery safety for speed (no intermediate snapshot of meta data)
§ Reduce size of critical section
§ RNTuple merging will be even faster (scale with just number of clusters rather than also number of branches)

§ Provide ways to monitor queue size to allow framework to suspend work
§ Auto-backup will be incorporated in upcoming release.

§ Test:
§ Reading and writing 1000+ branches ran longer than user patience.
§ New version: 11s with 1 thread, 8s with 6 threads with 50 events per chunk (and 22s for 500 events)

12May 8, 2023 ROOT I/O --- CHEP 2023

This Photo by Unknown Author
is licensed under CC BY-SA

https://commons.wikimedia.org/wiki/File:Niagara_Falls_Switch_Yard.jpg
https://creativecommons.org/licenses/by-sa/3.0/

§ Improvements made thanks in very large parts to submission of running
challenging examples and even to actual code contributions from user(s).

§ Amdahl’s law is very noticeable at 256 threads

§ Broad-strokes enabling of thread safely can sometimes
be enough but source of noticeable slowdown at high
thread count.

§ But still, existing code can be significantly improved with a few (some simple
and some not so simple) techniques.
§ A RDataFrame scenario with 256 threads ran O(100x) faster

13May 8, 2023 ROOT I/O --- CHEP 2023

Summary

This Photo by Unknown Author is licensed under CC BY

https://fabiusmaximus.com/2015/02/04/economics-secular-stagnation-78028/
https://creativecommons.org/licenses/by/3.0/

Backup Slides

1414May 8, 2023 ROOT I/O --- CHEP 2023

Final File

Old Fashion Arrangement

15

Client

Client

Client Server

Fast Merging

Node used for many of the test

§ 128core/256 thread cpu (dual EPYC 7702)
§ 1TB RAM
§ raid0 array of gen4 nvme ssd's (in synthetic benchmarks the array

can push 100Gbytes/sec in sequential reads)
§ NIC is 100gbps (relevant for the cases where we test network reads from eos/xrootd,

ceph etc, though all of the comparisons are running from the local ssd
array unless explicitly stated otherwise)

16May 8, 2023 ROOT I/O --- CHEP 2023

Fast Merging

§ ROOT Files can be ‘fast’ merged by ‘only’
§ Copying/appending the compressed data (baskets)

§ Updating the meta data (TTree object)

§ In first approximation we reach disk bandwith

• Actually … half … since we read then write.

§ Leverage this capability and use in-memory file to add support for multiple
writers to the same file
§ Data just written once, hence reaching disk bandwith

§ Multi-thread in production

§ MPI in production

17

With Parallel Merging

18

Final File

Client

Client

Client

Server

TBufferMerger

19

Worker Thread

Data
Buffer

Worker Thread
Worker Thread

Worker Thread

Data
Buffer

Data
Buffer

Data
Buffer

Data
Buffer

Merge()

Disk

Data
Buffer

Data Queue Data
Buffer

TBufferMerger

Data
BufferData

BufferWorker Thread

Data
Buffer

Write()

Write()

Write()

Write()

Write()

One sort-of breaking change

§ Skip registration of TFile’s UUIDs
§ 2x elapsed time reduction on a RDF benchmark reading one column from 4000 files with 1M

entries and using 256 threads:

§ Baseline:
Percent of CPU this job got: 1557%
Elapsed time: 0:49.89

§ Improved
Percent of CPU this job got: 14271%
Elapsed time: 0:21.11

§ Breaks the very rare case where a TRef points to the TFile object
§ which was already not properly supported in multi-thread

20May 8, 2023 ROOT I/O --- CHEP 2023

2x in time
9x in CPU usage

Bottleneck switches from
mutex to spin locks

https://github.com/root-project/root/pull/10318

Additional Note

§ TFile WriteCache
§ Allow delaying and coalescing the write at the cost of more memory
§ Not often used as gain is minimal on a single disk and memory often tight

§ FastMerge additional features:
§ Reorganize how the baskets are laid out on the file

§ And could be improve to:
§ Delay, coalesce or even distribute the actual writing

21

