RooFit's new heterogeneous
computing backenao

Jonas Rembser

8 May, CHEP 2023

ROOT

Data Analysis Framework

https://root.cern

https://root.cern

Introduction

» RooFit: C++ library for statistical data analysis in ROOT
e provides tools for model building, fitting and statistical tests
» Recent development focused on:
e Performance boost (preparing for larger datasets of HL-LHC)
e More user friendly interfaces and high-level tools
» Today: of RooFit first presented at a conference (CHEP 2003)

https://www.nikhef.nl/~verkerke/talks/chep03/chep2003_v4.pdf

Introduction

» RooFit: C++ library for statistical data analysis in ROOT
e provides tools for model building, fitting and statistical tests
» Recent development focused on:
e Performance boost (preparing for larger datasets of HL-LHC)
e More user friendly interfaces and high-level tools
» Today: of RooFit first presented at a conference (CHEP 2003)

In this presentation:

» Report on new vectorized RooFit interface with GPU support (aka BatchMode)
» Follow-up on ACAT 2021 talk with preliminary prototype results
» Today's benchmark results obtained with ROOT 6.28.04!

Other RooFit presentations to follow:

» Garimas Singhs presentation on applying automatic differentiation to RooFit
» Zef Wolffs presentation on configurable parallelization in RooFit

https://www.nikhef.nl/~verkerke/talks/chep03/chep2003_v4.pdf
https://indico.cern.ch/event/855454/contributions/4596763/
https://indico.jlab.org/event/459/contributions/11581/
https://indico.jlab.org/event/459/contributions/11580/

Computation graphs in RooFit

RooFit evaluates expression trees many times for
different parameter values to find NLL minima.

Computation graphs in RooFit

. . . Expression tree with observables x
RooFit evaluates expression trees many times for and y for 10000 data points:

different parameter values to find NLL minima. Gaussian(x | mu,sigmaly))

Gaussian
10000

RooRealVvar x{"x", "x",
RooRealvar y{"y", "y",

RooRealvVar mu{"mu", "mu", 0.0, -20.0, 20.0};
RooFormulaVar sigma{"sigma", "1.0 + 2.0 * y", {yv}};

RooGaussian gauss{"gauss", "gauss", x, mu, sigma};

Computation graphs in RooFit

Expression tree with observables x

RooFit evaluates expression trees many times for and y for 10000 data points:

different parameter values to find NLL minima. Gaussian(x | mu,sigmaly))
e . . 10000

Why rewriting RooFit NLL evaluation backend:

» Old RooFit computation: re-evaluate expression
tree of for each event
» Lots of function calls, no vectorization possible

RooRealvar x{"x", "x", 0.0, -20.0, 20.0}

RooRealVar y{"y", "y", 0.0, 0.0, 1.0}

RooRealvVar mu{"mu", "mu", 0.0, -20.0, 20.0};
RooFormulaVar sigma{"sigma", "1.0 + 2.0 * y", {yv}};
RooGaussian gauss{"gauss", "gauss", x, mu, sigma};

Computation graphs in RooFit

RooFit evaluates expression trees many times for
different parameter values to find NLL minima.

Why rewriting RooFit NLL evaluation backend:

» Old RooFit computation: re-evaluate expression
tree of for each event
» Lots of function calls, no vectorization possible

Should have been easy to improve and do on GPU?!

1. Allocate memory for results

2. Call vectorized function/CUDA kernel for each node’
in topological order if values of children have
changed

'RooAbsArg in RooFit

Expression tree with observables x
and y for 10000 data points:
Gaussian(x | mu,sigmal(y))

Gaussian
10000

RooRealvar x{"x", "x", 0.0, -20.0, 20.0}

RooRealvar y{"y", "y", 0.0, 0.0, 1.0}

RooRealvVar mu{"mu", "mu", 0.0, -20.0, 20.0};
RooFormulaVar sigma{"sigma", "1.0 + 2.0 * y", {yv}};

RooGaussian gauss{"gauss", "gauss", x, mu, sigma};

Computation graphs in RooFit

RooFit model evaluation is not straight forward:

» Nodes often own other nodes that they evaluate
» These internal nodes are not registered in the graph
» Sometimes these nodes are even clones of entire subgraphs

Computation graphs in RooFit

RooFit model evaluation is not straight forward: Evaluating model for given normalization
observables dynamically extends computation graph,

adding new disconnected nodes

Gaussian
10000

» Nodes often own other nodes that they evaluate
» These internal nodes are not registered in the graph
» Sometimes these nodes are even clones of entire subgraphs

Typical example: normalization integrals

(still harmless compared to other cases, but good for illustration)

gauss.getVal (/*normSet=*/x) ;

Computation graphs in RooFit

RooFit model evaluation is not straight forward: Evaluating model for given normalization
observables dynamically extends computation graph,
» Nodes often own other nodes that they evaluate adding new disconnected nodes

» These internal nodes are not registered in the graph
» Sometimes these nodes are even clones of entire subgraphs

Gaussian
10000

Typical example: normalization integrals

(still harmless compared to other cases, but good for illustration)

Dynamic nature of computation graphs in RooFit makes

organizing data flow and computations in a heterogeneous @ @
computing environment a challenge.

In other words: data structure for model building not

gauss.getvVal (/*normSet=*/x) ;
completely suitable for evaluation.

10

Computation graphs with fixed normalization

New mechanism to “compile” the graph for a | Fach RooAbsArg involved in the
given normalization set to fulfill condition —— | evaluation must be connected

to the top node via RooFits
client-server relations.

11

Computation graphs with fixed normalization

New mechanism to “compile” the graph for a Each RooAbsArg involved in the
given normalization set to fulfill condition —— | evaluation must be connected
to the top node via RooFits
client-server relations.

If your RooFit classes don't fulfill this yet, you
should consider overriding:
RooAbsArqg: :compileForNormSet ()

» Function called recursively in NLL
creation when using BatchMode ()

» Resultis ready for heterogeneous eval.
» Mechanism also used for the C++ code
generation from RooFit models that
enables automatic differentiation

(see next talk by Garima Singh)

This function can also be used to hook in graph optimizations.

12

https://root.cern.ch/doc/master/classRooAbsArg.html#a836768507f48ec05f8d1f6e122d7f64d
https://indico.jlab.org/event/459/contributions/11581/

Computation graphs with fixed normalization

New mechanism to “compile” the graph for a
given normalization set to fulfill condition ——

If your RooFit classes don't fulfill this yet, you
should consider overriding:
RooAbsArqg: :compileForNormSet ()

» Function called recursively in NLL
creation when using BatchMode ()

» Resultis ready for heterogeneous eval.
» Mechanism also used for the C++ code
generation from RooFit models that
enables automatic differentiation

(see next talk by Garima Singh)

This function can also be used to hook in graph optimizations.

Normalized

Gaussian
10000

\

Each RooAbsArg involved in the
evaluation must be connected
to the top node via RooFits

; Gaussian
client-server relations. irlx:)egorgl

sigmal(y)
10000

auto nll = gauss.createNLL (
*data,
ConditionalObservables (y),
BatchMode ("cpu")

); // create NLL object

nll->Print ("v"); // get some info on the graph evaluation order

Idx	Name	Class	Size	From Data
1	y	RooRealVar	10000	1
2	sigma	RooFormulaVar	10000	0
3	mu	RooRealVar	1	0
4	x	RooRealVar	10000	1
5	gauss	RooGaussian	10000	O
6	gauss_Int([x]	RooReallntegral	10000	0
7	gauss_over_gauss_Int[x]	RooNormalizedpdf	10000	O
8	nll	RooNLLVar	1	0

13

https://root.cern.ch/doc/master/classRooAbsArg.html#a836768507f48ec05f8d1f6e122d7f64d
https://indico.jlab.org/event/459/contributions/11581/

The vectorized evaluation functions

The BatchMode backend uses new functions in RooAbsReal that you can override to add
support for CPU and GPU of your class:

® RooAbsReal ::canComputeWithCuda ()
® RooAbsReal ::computeBatch ()

Implementation of RooFit classes in ROOT uses RooBatchCompute library to implement
computeBatch () :

e Architecture-specific accelerator libraries for key functions

e Optimal one loaded at runtime, given current architecture

e More details in the ACAT 2021 talk

>

Add the FastEvaluations stream to the RooMsgService the get info printouts when your
RooAbsArgs don’t support the new backend:

® RooMsgService ::instance () .addStream (
RooFit::Info, Topic (RooFit::FastEvaluations)

) ;

14

https://indico.cern.ch/event/855454/contributions/4596763/
https://root.cern.ch/doc/master/rf506__msgservice_8C.html

Benchmarking the RooFit test suite

RooFit/HistFactory stress tests: speedup of NLL minimization by using BatchMode("cpu")

Fitting,plotting & event generation of basic pdf

Data import methods

Interpreted expression pdf

C++ function binding operator pdf

Addition operator pdf

Extended ML fits to addition operator pdfs

Basic fitting and plotting in ranges

H H H—— H H H Extended ML fit in sub range

> Plot shows relative time spent for minimizations in PP Comloncort
. - onditional use of F(x|y)
stressRooFit tests for BatchMode (“cpu”) and “off” S Tt Rl
Fit in multiple rectangular ranges

Pdf marginalization through integration
Fit with non-rectangular observable boundaries

» Significant speedup for almost all tests from a . Siifancocs ot oprtr
. . uxiliary observable constraints
combination of: NLL error handiing

Fit Result functionality

a. Vectorized evaluation EﬁEﬁypggpzﬁIé
b. Optimized computation graphs e e ot ot
c. Less function calls MG Study wih ch/2 Gallator

MC Study with param rand and Z calc
MC Studies with aux obs constraints
HistFactory example 001

0o 2 4 6 8 10 12
Relative Speedup [old/new]

» Average speedup of 4.4x

Results obtained with ROOT 6.28.04
Compare also to |CHEP 2022 results, showing less drastic
speedups in the middle of ROOT 6.28 development

15

https://github.com/root-project/root/blob/master/test/stressRooFit_tests.h
https://agenda.infn.it/event/28874/contributions/169205/

Benchmarking basic unbinned fits

> BenCh mark'ﬂg unblnned blt Wlth 1 RooFit: speedup in benchmark fits with BatchMode() relative to old RooFit (1 million events)
million events % - CPU (AMD Ryzen 9 3900)
[0 30
Q. %
> The CPU BatchMode runs on a @ LI CUDA (X 3070 gaming GPU)
single thread = _E
o 20F
» The CUDA kernels are launched "°E
with 128 thread blocks with 1024 10
threads each s
0: i i 7 i ixture 1: ixture 2:
» Plot shows speedup relative to the GeLSSER Mo sbobsevabie) puserponenfia P%Li:ﬁgausls; gaj;nii‘g;nma .
1 1 X (gauss + poly, + gauss + gauss + po
old scalar evaluation interface X gamma

benchRooFitBackends in rootbench repo, plotting script is in
same directory. Try it yourself with ROOT 6.28.04!
Remember to use a ROOT build with -Dcuda=0ON

16

https://github.com/root-project/rootbench/blob/master/root/roofit/roofit/benchRooFitBackends.cxx

benchmarks for analytical convolution fits

» New benchmarks based on analytical convolutions of
RooBMixDecay with resolution functions
e With perfect resolution (RooTruthModel)
e Gaussian resolution (RooGaussModel)
e Double-Gaussian resolution
(RooAddModel of RooGaussModels)
» Describes the decay of B mesons with the effects of
BO/BObar mixing
» Quite an involved fit:
double-Gauss fit takes 1 min with old backend
» GPU speedup up to 40x!
e Larger speedups than for previously
benchmarked simple models

Plan to also do numeric integrals on GPU in the future
to support more B-physics usecases, i.e. amplitude fits.

Relative Speedup

RooFit: speedup in benchmark fits with BatchMode() relative to old RooFit (1 million events)

40 - CPU (AMD Ryzen 9 3900)
35)
CUDA (RTX 3070 gaming GPU)

30

10

IHII!IIIlII\\ll\lll\llllll\l

RooBMixDecay RooBMixDecay RooBMixDecay
perfect resolution Gaussian res. Double-Gaussian res.

RooFitUnBinnedBenchmarks in rootbench repo, plotting script
is in same directory. Try it yourself with ROOT 6.28.04!
Remember to use a ROOT build with -Dcuda=0ON

17

https://root.cern/doc/master/classRooBMixDecay.html
https://github.com/root-project/rootbench/blob/master/root/roofit/roofit/RooFitUnBinnedBenchmarks.cxx

How to use the new NLL evaluation backend

» Tryit out by passing “cpu” or “cuda” to the BatchMode () argument of
RooAbsPdf :: fitTo () / RooAbsPdf : :createNLL ():

e pdf.fitTo (data, RooFit::BatchMode (“cuda”))

It's a one-line change!

See also the RooAbsPdf documentation.

18

https://root.cern.ch/doc/master/classRooAbsPdf.html#a52c4a5926a161bcb72eab46890b0590e

v

Conclusions and next steps

RooFits new vectorized NLL evaluation backend (aka. BatchMode) is now production ready
e All RooFit tests pass if enabled by default, which might happen in next ROOT release
e If your model doesn't benefit from speedup yet, please open a bug report
e Average speedup of about 4x compared the old RooFit evaluation backed

Revised CUDA backend in ROOT 6.28.04!
e Gives you great speedup for wide range of unbinned fits with many events
e Average speedup of 25x (up to 40x!) in fits with 1M events on GeForce RTX 3070

The new backend relies on mechanism to fix computation graph that you might need to
implement in custom RooFit classes

Next steps (CERN openlab summer student project):

e Support even more PDFs with CUDA backend
e Numeric integration also on the GPU

19

https://github.com/root-project/root/issues

