
https://root.cern

ROOT
Data Analysis Framework

RooFit's new heterogeneous
computing backend

Jonas Rembser

8 May, CHEP 2023

https://root.cern

Introduction

▶ RooFit: C++ library for statistical data analysis in ROOT
● provides tools for model building, fitting and statistical tests

▶ Recent development focused on:
● Performance boost (preparing for larger datasets of HL-LHC)
● More user friendly interfaces and high-level tools

▶ Today: 20th anniversary of RooFit first presented at a conference (CHEP 2003)

2

https://www.nikhef.nl/~verkerke/talks/chep03/chep2003_v4.pdf

Introduction

▶ RooFit: C++ library for statistical data analysis in ROOT
● provides tools for model building, fitting and statistical tests

▶ Recent development focused on:
● Performance boost (preparing for larger datasets of HL-LHC)
● More user friendly interfaces and high-level tools

▶ Today: 20th anniversary of RooFit first presented at a conference (CHEP 2003)

3

In this presentation:

▶ Report on new vectorized RooFit interface with GPU support (aka BatchMode)
▶ Follow-up on ACAT 2021 talk with preliminary prototype results
▶ Today’s benchmark results obtained with ROOT 6.28.04!

Other RooFit presentations to follow:

▶ Garimas Singhs presentation on applying automatic differentiation to RooFit
▶ Zef Wolffs presentation on configurable parallelization in RooFit

https://www.nikhef.nl/~verkerke/talks/chep03/chep2003_v4.pdf
https://indico.cern.ch/event/855454/contributions/4596763/
https://indico.jlab.org/event/459/contributions/11581/
https://indico.jlab.org/event/459/contributions/11580/

Computation graphs in RooFit

RooFit evaluates expression trees many times for
different parameter values to find NLL minima.

4

Computation graphs in RooFit

RooFit evaluates expression trees many times for
different parameter values to find NLL minima.

5

Expression tree with observables x
and y for 10000 data points:
Gaussian(x|mu,sigma(y))

RooRealVar x{"x", "x", 0.0, -20.0, 20.0};
RooRealVar y{"y", "y", 0.0, 0.0, 1.0};

RooRealVar mu{"mu", "mu", 0.0, -20.0, 20.0};
RooFormulaVar sigma{"sigma", "1.0 + 2.0 * y", {y}};

RooGaussian gauss{"gauss", "gauss", x, mu, sigma};

Computation graphs in RooFit

RooFit evaluates expression trees many times for
different parameter values to find NLL minima.

6

Expression tree with observables x
and y for 10000 data points:
Gaussian(x|mu,sigma(y))

RooRealVar x{"x", "x", 0.0, -20.0, 20.0};
RooRealVar y{"y", "y", 0.0, 0.0, 1.0};

RooRealVar mu{"mu", "mu", 0.0, -20.0, 20.0};
RooFormulaVar sigma{"sigma", "1.0 + 2.0 * y", {y}};

RooGaussian gauss{"gauss", "gauss", x, mu, sigma};

Why rewriting RooFit NLL evaluation backend:

▶ Old RooFit computation: re-evaluate expression
tree of for each event

▶ Lots of function calls, no vectorization possible

Computation graphs in RooFit

RooFit evaluates expression trees many times for
different parameter values to find NLL minima.

7

Expression tree with observables x
and y for 10000 data points:
Gaussian(x|mu,sigma(y))

RooRealVar x{"x", "x", 0.0, -20.0, 20.0};
RooRealVar y{"y", "y", 0.0, 0.0, 1.0};

RooRealVar mu{"mu", "mu", 0.0, -20.0, 20.0};
RooFormulaVar sigma{"sigma", "1.0 + 2.0 * y", {y}};

RooGaussian gauss{"gauss", "gauss", x, mu, sigma};

Should have been easy to improve and do on GPU?!

1. Allocate memory for results
2. Call vectorized function/CUDA kernel for each node1

in topological order if values of children have
changed

1RooAbsArg in RooFit

Why rewriting RooFit NLL evaluation backend:

▶ Old RooFit computation: re-evaluate expression
tree of for each event

▶ Lots of function calls, no vectorization possible

Computation graphs in RooFit

RooFit model evaluation is not straight forward:

▶ Nodes often own other nodes that they evaluate
▶ These internal nodes are not registered in the graph
▶ Sometimes these nodes are even clones of entire subgraphs

8

Computation graphs in RooFit

RooFit model evaluation is not straight forward:

▶ Nodes often own other nodes that they evaluate
▶ These internal nodes are not registered in the graph
▶ Sometimes these nodes are even clones of entire subgraphs

9

gauss.getVal(/*normSet=*/x);

Evaluating model for given normalization
observables dynamically extends computation graph,
adding new disconnected nodes

Typical example: normalization integrals
(still harmless compared to other cases, but good for illustration)

Computation graphs in RooFit

RooFit model evaluation is not straight forward:

▶ Nodes often own other nodes that they evaluate
▶ These internal nodes are not registered in the graph
▶ Sometimes these nodes are even clones of entire subgraphs

10

gauss.getVal(/*normSet=*/x);

Evaluating model for given normalization
observables dynamically extends computation graph,
adding new disconnected nodes

Typical example: normalization integrals
(still harmless compared to other cases, but good for illustration)

Dynamic nature of computation graphs in RooFit makes
organizing data flow and computations in a heterogeneous
computing environment a challenge.

In other words: data structure for model building not
completely suitable for evaluation.

Computation graphs with fixed normalization

New mechanism to “compile” the graph for a
given normalization set to fulfill condition

11

Each RooAbsArg involved in the
evaluation must be connected
to the top node via RooFits
client-server relations.

Computation graphs with fixed normalization

New mechanism to “compile” the graph for a
given normalization set to fulfill condition

12

Each RooAbsArg involved in the
evaluation must be connected
to the top node via RooFits
client-server relations.

If your RooFit classes don’t fulfill this yet, you
should consider overriding:
RooAbsArg::compileForNormSet()

▶ Function called recursively in NLL
creation when using BatchMode()

▶ Result is ready for heterogeneous eval.
▶ Mechanism also used for the C++ code

generation from RooFit models that
enables automatic differentiation
(see next talk by Garima Singh)

This function can also be used to hook in graph optimizations.

https://root.cern.ch/doc/master/classRooAbsArg.html#a836768507f48ec05f8d1f6e122d7f64d
https://indico.jlab.org/event/459/contributions/11581/

Computation graphs with fixed normalization

New mechanism to “compile” the graph for a
given normalization set to fulfill condition

13

auto nll = gauss.createNLL(
 *data,
 ConditionalObservables(y),
 BatchMode("cpu")
); // create NLL object

nll->Print("v"); // get some info on the graph evaluation order

| Idx | Name | Class | Size | From Data |

1	y	RooRealVar	10000	1
2	sigma	RooFormulaVar	10000	0
3	mu	RooRealVar	1	0
4	x	RooRealVar	10000	1
5	gauss	RooGaussian	10000	0
6	gauss_Int[x]	RooRealIntegral	10000	0
7	gauss_over_gauss_Int[x]	RooNormalizedPdf	10000	0
8	nll	RooNLLVar	1	0

Each RooAbsArg involved in the
evaluation must be connected
to the top node via RooFits
client-server relations.

If your RooFit classes don’t fulfill this yet, you
should consider overriding:
RooAbsArg::compileForNormSet()

▶ Function called recursively in NLL
creation when using BatchMode()

▶ Result is ready for heterogeneous eval.
▶ Mechanism also used for the C++ code

generation from RooFit models that
enables automatic differentiation
(see next talk by Garima Singh)

This function can also be used to hook in graph optimizations.

https://root.cern.ch/doc/master/classRooAbsArg.html#a836768507f48ec05f8d1f6e122d7f64d
https://indico.jlab.org/event/459/contributions/11581/

The vectorized evaluation functions

▶ The BatchMode backend uses new functions in RooAbsReal that you can override to add
support for CPU and GPU of your class:
● RooAbsReal::canComputeWithCuda ()
● RooAbsReal::computeBatch()

▶ Implementation of RooFit classes in ROOT uses RooBatchCompute library to implement
computeBatch() :
● Architecture-specific accelerator libraries for key functions
● Optimal one loaded at runtime, given current architecture
● More details in the ACAT 2021 talk

▶ Add the FastEvaluations stream to the RooMsgService the get info printouts when your
RooAbsArgs don’t support the new backend:
● RooMsgService::instance().addStream(

 RooFit::Info, Topic(RooFit::FastEvaluations)
);

14

https://indico.cern.ch/event/855454/contributions/4596763/
https://root.cern.ch/doc/master/rf506__msgservice_8C.html

Benchmarking the RooFit test suite

▶ Plot shows relative time spent for minimizations in
stressRooFit tests for BatchMode(“cpu”) and “off”

▶ Significant speedup for almost all tests from a
combination of:
a. Vectorized evaluation
b. Optimized computation graphs
c. Less function calls

▶ Average speedup of 4.4x

15

Results obtained with ROOT 6.28.04
Compare also to ICHEP 2022 results, showing less drastic
speedups in the middle of ROOT 6.28 development

https://github.com/root-project/root/blob/master/test/stressRooFit_tests.h
https://agenda.infn.it/event/28874/contributions/169205/

Benchmarking basic unbinned fits

▶ Benchmarking unbinned bit with 1
million events

▶ The CPU BatchMode runs on a
single thread

▶ The CUDA kernels are launched
with 128 thread blocks with 1024
threads each

▶ Plot shows speedup relative to the
old scalar evaluation interface

16

benchRooFitBackends in rootbench repo, plotting script is in
same directory. Try it yourself with ROOT 6.28.04!
Remember to use a ROOT build with -Dcuda=ON

https://github.com/root-project/rootbench/blob/master/root/roofit/roofit/benchRooFitBackends.cxx

New benchmarks for analytical convolution fits

▶ New benchmarks based on analytical convolutions of
RooBMixDecay with resolution functions
● With perfect resolution (RooTruthModel)
● Gaussian resolution (RooGaussModel)
● Double-Gaussian resolution

(RooAddModel of RooGaussModels)
▶ Describes the decay of B mesons with the effects of

B0/B0bar mixing
▶ Quite an involved fit:

double-Gauss fit takes 1 min with old backend
▶ GPU speedup up to 40x!

● Larger speedups than for previously
benchmarked simple models

Plan to also do numeric integrals on GPU in the future
to support more B-physics usecases, i.e. amplitude fits.

17

RooFitUnBinnedBenchmarks in rootbench repo, plotting script
is in same directory. Try it yourself with ROOT 6.28.04!
Remember to use a ROOT build with -Dcuda=ON

https://root.cern/doc/master/classRooBMixDecay.html
https://github.com/root-project/rootbench/blob/master/root/roofit/roofit/RooFitUnBinnedBenchmarks.cxx

How to use the new NLL evaluation backend

▶ Try it out by passing “cpu” or “cuda” to the BatchMode() argument of
RooAbsPdf::fitTo() / RooAbsPdf::createNLL():

● pdf.fitTo(data, RooFit::BatchMode(“cuda”))

It’s a one-line change!

See also the RooAbsPdf documentation.

18

https://root.cern.ch/doc/master/classRooAbsPdf.html#a52c4a5926a161bcb72eab46890b0590e

Conclusions and next steps

▶ RooFits new vectorized NLL evaluation backend (aka. BatchMode) is now production ready
● All RooFit tests pass if enabled by default, which might happen in next ROOT release
● If your model doesn’t benefit from speedup yet, please open a bug report
● Average speedup of about 4x compared the old RooFit evaluation backed

▶ Revised CUDA backend in ROOT 6.28.04!
● Gives you great speedup for wide range of unbinned fits with many events
● Average speedup of 25x (up to 40x!) in fits with 1M events on GeForce RTX 3070

▶ The new backend relies on mechanism to fix computation graph that you might need to
implement in custom RooFit classes

▶ Next steps (CERN openlab summer student project):
● Support even more PDFs with CUDA backend
● Numeric integration also on the GPU

19

https://github.com/root-project/root/issues

